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Abstract

Transient classification is the problem of identifying and classifying temporary phenomena in astro-

nomical data. These phenomena are caused by extreme physical processes such as supernova explosions

unfolding in the Universe. Hence, automating transient discovery and classification has great scientific

value for astronomers. This thesis contributes in a number of areas to solving the problem of the early

classification of transient events from noisy and sparsely sampled astronomical data. In it I frame the

problem of astronomical transient classification in the computer science field of time series classifica-

tion. I also implement a classifier using the Random Forest supervised classification algorithm with

wavelet transforms, and statistical properties and shapelet representations of time series as features. I

assess the effectiveness of this classifier on a number of simulated transient classes with singular and

combined distortions such as noise, missing data and power law distributions applied. The results of

this evaluation demonstrate that supervised classification holds some promise for solving the transient

classification problem but is not yet suitable for the VAST pipeline in terms of classification. I propose

using data preprocessing techniques such as regression and noise smoothing and filtering to improve

classification accuracy.
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CHAPTER 1

Introduction

1.1 Problem Context

Astronomy is by nature an observational, data-driven science. During the last few decades the field was

transformed by technology with software and databases becoming an integral part of data gathering and

analysis. As the sophistication of observational equipment has improved the volume of observational

data available to researchers has increased. The ASKAP1 telescope array under construction in Western

Australia will produce a gigabyte of processed data per second . A topic of growing interest has been to

automate the analysis of these large data volumes. The subject of this research is to develop algorithms

for use in an automatic data analysis pipeline for detecting astronomical transient events as part of the

VAST2 project.

1.2 Transients and Time Series

An astronomical transient event is a structural change in the observation of a stellar object such as a

star or galaxy, referred to as sources by astronomers. These observations take the form of time series,

or to astronomers, light curves. Time series represent the intensity of an observed source in potentially

multiple frequencies over some time indices. An explicit definition for time series is:

{(ti,xi) i ∈ {t1 . . . tD} ⊂ R xi ∈ RD}

a mapping from unique time indices ti to aD dimensional vector xi. The ti values may represent any real

unit of time - seconds, days, years. The sequence of increasing ti is not necessarily evenly distributed. A

typical astronomical time series we are looking for is a supernova. A supernova occurs when very large

1http://www.atnf.csiro.au/SKA/
2http://www.physics.usyd.edu.au/sifa/vast/index.php

1

http://www.atnf.csiro.au/SKA/
http://www.physics.usyd.edu.au/sifa/vast/index.php
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stars reach the end of their life cycle resulting in a catastrophic explosion. These explosions release large

amounts of radiation that can be detected from great distances. Variability in astronomical time series

FIGURE 1.1: Supernova light curve. The height of the observations on the y-axis indi-
cates the observed intensity at the given time position

is not always intrinsic to the source, that is, the result of some change in the source itself such as in a

supernova event. Some scintillation will result from the light interacting with the interstellar medium on

its journey to earth. This is called extrinsic variation and will complicate the process of analysing the

time series.

1.3 The Problem

The precise problem to be explored in this research is the development of an algorithm for the classi-

fication of streaming time series data. The algorithm will receive data every 5 seconds. At each time

step any new transients will be reported and along with what class they belong to with a measure of

confidence. It is possible that a transient may belong to an undetermined class and this also needs to be

taken into account. The detection of transients should be done as early as possible but should not have

too many false positives.
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1.4 Time Series Analysis

This problem is primarily one of time series analysis. Fortunately, in recent years this field has received

a lot of attention in various domains: speech recognition (Sakoe and Chiba, 1978), handwriting analysis

(Bahlmann et al., 2002), even image outlines can be represented as time series and classified (Ye and

Keogh, 2009). However, the well-developed techniques from these other areas do not extend imme-

diately to our astronomical data. Table 1.1 outlines the most serious difficulties inherent to this task.

incompleteness Data arrives as a stream, and classification must be done without full
knowledge of the curve structure. Most developed techniques assume
full structure data is available.

distortions Astronomical time series have distortions in terms of amplitude scaling,
time warping, noise and missing data.

precision Classifications must have very high precision. Too many false positives
will waste astronomer time and make the system useless.

real-time There are very large data volumes arriving in a stream - 1 GB/s, so clas-
sification must be time and space efficient and at least near-real time.

redundant Most data is not relevant to event detection. The start and end of inter-
esting structures must also be determined by the program.

periodic Some data will come from periodic sources and this will confuse algo-
rithms searching for ‘one-off’ events. Periodic time series may need to
be identified and handled separately.

TABLE 1.1: Difficulties inherent to classifying transients from astronomical data

This set of problems is not trivial, and no individual piece of research at present addresses them all.

Literature from several domains: machine learning, time series analysis (in astronomy and other fields)

and statistics is reviewed and discussed in the following sections with the aim of addressing these issues.

1.5 Coping with Distortions in Astronomical Time Series

Below is a list of subproblems associated with the issue of distortions in our astronomical time series.
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• noisy observations. It can be assumed that every point in a light curve has added noise. For

simplicity this noise is assumed to be Gaussian distributed which is a reasonable approximation

of real conditions in astronomical data.

• amplitude scaling - the same astronomical event will have a different intensity when observed

at different distances

• missing data - streaming data is not continuous. This may be due to bad weather or shared

telescope responsibilities.

• time warping - events may have different durations or unfold slightly differently, but still have

very similar structures

1.6 Our contributions

This thesis contributed in several ways to solving the challenge of transient classification. I phrased the

problem as a time series classification problem and gave an extensive review of existing literature from a

variety of application domains. I proposed a classification framework with variety of simulated transient

types and implemented software to apply the distortions present in astronomical data to them. Finally I

develop a feature based supervised transient classification approach and evaluate a number of features

including wavelet transforms, statistical properties of light curves and the shapelet time series feature

representation. I concluded that these features hold promise for transient classification but are not yet

ready for application in the VAST pipeline, and proposed data preprocessing and modifications to the

feature implementations that will improve classification performance. This thesis is an important first

step in developing effective transient classification for VAST.



CHAPTER 2

Literature Review

2.1 Distance Measures for Time Series

2.1.1 Overview

This literature review explores a number of approaches to transient classification. These include distance

measures, Gaussian Processes, feature based classification with wavelet transforms, shapelet and motif

finding, Support Vector Machines with periodic kernels, Temporal Grammars, and statistical properties

of flux histograms of light curves. It concludes that feature based classification with wavelet transforms

and statistical features is the most likely approach for effective classification of transients due to its

ability to include many features that capture a wide variety of transient properties.

2.1.2 Introduction

The most primitive approach to analysing a time series is to overlay it onto another time series with

known class and see how well it fits by calculating the Euclidean distance between the two curves. A

low distance indicates a high similarity. By comparing the test curve to a number of training samples

the most likely class is determined as that having the lowest distance (or lowest distance below some

threshold). This approach, called a Nearest Neighbour classification, can be very effective if the time

series are uniform within their class.

Unfortunately, astronomical time series do not have that property. Although they have the same form in

terms of peaks, throughs, plateaus, lines, wobbles and so on, the actual magnitude and time over which

astronomical transients unfold is not necessarily the same. These issues are called amplitude scaling

and time warping. These two distortions, compounded with the lack of complete data make Euclidean

distance useless.

5
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Overcoming this distance measure issue may yield in itself a solution to our problem. Additionally, dis-

tance measures are likely to be integral to data preprocessing or to the application of other approaches

such as temporal grammars, support vector machines and shapelets discussed later. The following sec-

tion is devoted to an exploration of more flexible distance measures than the Euclidean distance.

2.1.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a technique first introduced in (Sakoe and Chiba, 1978) and was pop-

ularised in (Berndt and Clifford, 1994) with successful application to speech signal classification. The

algorithm is a dynamic programming approach to that allows the matching to ‘skip’ parts of either time

series in order to align them better. The distance of two time series under DTW is then the minimum

across all possible matchings. Figure 2.1 shows dynamic time warping finding a better alignment for

two sequences than Euclidean distance. Dynamic time warping deals very well with changes in the way

transients unfold but is not guaranteed to find a good match in the presence of amplitude scaling. It also

seems hard to extend this algorithm to matching subsequences as required by our problem.

Should dynamic time warping or some modification be found useful to us, an extension of the compu-

tation that allows on-line updating would be very attractive for dealing with the real-time complication.

Such an extension is given in (Capitani and Ciaccia, 2007), which gives an algorithm with constant

time updating of DTW distance for a time series stream. The distance measure so produced is a close

approximation of the full DTW distance.

FIGURE 2.1: Dynamic time warping finding a superior alignment for two time series
than Euclidean distance. Alignment is indicated where a grey line joins two points of
the series.
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2.1.4 Longest Common Subsequence for Time Series

A similar distance measure to DTW is the Longest Common SubSequence (LCSS). LCSS differs from

DTW mainly in that all components of both series do not need to be included in the matching. The

most similar components of each series are compared in the distance measure only. This approach will

find be able to match subsequences to series and cope with time warping at the same time. In (Vlachos

et al., 2002), an implementation of LCSS that allows translations (not scaling) in space and is fast to

compute is given. The translations are incorporated into the dynamic programming algorithm as another

dimension to search through. In the paper it is applied to accurately recognise human gestures presented

as multivariable time series in the presence of time warping and translations in space.

FIGURE 2.2: Longest Common Subsequence Distance match between a test (query)
curve and a training sample (data)

2.1.5 Complexity distance

An interesting recent paper of note is (Batista et al., 2011). This paper attempts to produce a distance

measure based on the abstract notion of complexity, the relative smoothness or bumpiness of a curve.

A simple approach to this suggested in the paper is to factor into an existing distance measure (for

example, euclidean distance) the relative length of the two time series. For example, if A and B are two

time series, C(A) and C(B) are the lengths of A and B, and E(A, B) is their euclidean distance, then a

new distance measure would be:
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a

D(A,B) =
max(C(A), C(B))

min(C(A), C(B))
E(A,B)

The intuition here is that the length of the time series roughly corresponds to its variance over time

- the closer two curves are in length the closer they are in complexity. The paper gives good results

for a complex time series representing leaf outlines. A similar idea may help to improve classification

accuracy for astronomical time series.

2.2 Gaussian Processes for regression and classification

2.2.1 Introduction to Gaussian Processes (GPs)

A Gaussian Process (GP) is a statistical model of data that can be used for regression, noise-filtering,

classification and prediction. In this section a discussion of the regression and noise-filtering abilities

will be presented in the hopes of addressing the distortions issue. A thorough introduction and explo-

ration of gaussian processes can be found in (Rasmussen and Williams, 2006). A brief overview for the

purposes of discussion is provided here.

A GP consists of a multivariate gaussian distribution, where each dimension of the distribution corre-

sponds to an index (in this case, time index) of an input point, say x. Gaussian distributions are defined

by a mean and a covariance matrix. GPs are more general in that the entries of the covariance matrix

are determined by a covariance function k. An evaluation of GPs for regression is carried out in (Ras-

mussen, 1996), demonstrating that GPs are competitive with neural networks on nonlinear regression

tasks, even performing slightly better when large amounts of noise are present.

Covariance functions determine the influence that the points in the distribution have on each other.

They are used to control the amount of flexibility and smoothness in the function that the distribution

represents. This is done both through the choice of function (popular choices are the squared expo-

nential or the Matern functions), and hyperparameters to the chosen function. Some commonly used

hyperparameters are lengthscale, noise variance and signal variance These correspond respectively to

the expected influence of points based on their distance apart in the index, the expected fluctuation in
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FIGURE 2.3: A Gaussian Processes doing Non-Linear Regression on a Time Series.
The crosses indicate observations, while the grey bands indicate uncertainty. Some
possible underlying functions drawn from processes are shown in green, blue and red.
Taken from (Rasmussen and Williams, 2006)

height and expected noise in the data. Optimising the hyperparameters for the dataset is key to getting

good regression, prediction and noise filtering.

2.2.2 Sparse Gaussian Processes

The time and space complexity of the fundamental GPs is prohibitive for large volumes of data. In recent

years several versions of GPs with approximations to covariance functions have been developed to cope

with these constraints. These improvements give a time complexity of O(mn) for training time and

O(m2) for prediction where m is the number of basis functions and m << n. The most recent versions

of sparse GPs are Sparse Spectrum Gaussian Processes (SSGPs) in (Lázaro-Gredilla et al., 2010) which

use periodic basis functions in the approximation. Sparse Multiscale GPs (Walder et al., 2008) and Fully

Independent Training Conditional (FITC) (Snelson and Ghahramani, 2005) comprise the state of the art.

Despite a sensitivity to overfitting on one highly non-linear dataset, SSGP otherwise outperforms FITC

and SPGP. With the excepting of the overfitted dataset, all implementations approach the error of a full

GP as the number of basis functions (m) in the approximation is sufficiently large.
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FIGURE 2.4: 3 Gaussian Process interpretations of the same data with varying length-
scales (l). The variance bands of the three plots demonstrate that choosing the right
hyperparameters is important for accurate regression. Taken from (Rasmussen and
Williams, 2006)

2.2.3 Online Gaussian Processes

Standard GPs can be altered to allow for on-line updates of the training variables, see (Osborne and

Roberts, 2007). Recently, sparse models have also been implemented that also allow for fast on-line

updating. In (Ranganathan et al., 2011), a sparse GP is presented giving an O(n) update time per

addition of an additional point. These GPs have full predictive power and outperform state-of-the-art

sparse GPs on non-linear data sets. There are limitations on this algorithm however, most importantly

that optimising the hyperparameters to new data is a costly O(n2) step. This is not ideal since we do not

know anything about the structure of our unfolding time series and some tuning is necessary for good

results. However, if this issue can be overcome, these are an attractive option for solving the distortions

problem.
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2.2.4 Summary

Gaussian processes are a promising tool for regression and noise filtering in astronomical data. They

have a high time complexity and their running time in practice will need to be tested by experiment.

Gaussian processes are unsuitable for transient classification because they require a known start and

end point of a transient event and any shifting of the time series will lead to poor classification. The

boundaries of the transient event will not be available in the VAST classification pipeline.

2.3 Approaches to Time Series Classification

This section gives a general discussion of techniques developed for analysing and classifying time se-

ries. Some of the methods will be more useful as features for generic machine learners. Falling under

this category are wavelets, temporal grammars and periodograms. Others are more directly useful for

classification, such as shapelets, support vector machines (SVMs), and phase invariant kernels. Each

subsection will aim to discuss the technique in terms of the relevant complications in our problem,

namely the real-time, precision and periodic issues.

2.4 Frequency Domain Approaches

2.4.1 Introduction

Frequency domain analysis is the most well explored technique for studying astronomical time series.

In itself it is highly effective for identification and classification of periodic stars - one category of astro-

nomical time series our system needs to deal with. Additionally, the outputs of the various techniques

can be used to extract features for time series without periodic structures. These features can then be

used in generic feature based machine learning classifiers. Worth noting is that frequency metrics are

less sensitive to noise and time warping than time domain analysis. A brief survey of the techniques and

how they may be applied to our problem follows.

2.4.2 Discrete Fourier Transforms and the Lomb-Scargle Periodogram

A Fourier transformation is decomposition of a continuous function into sinusoids. The strength of the

peak for each component of the decomposition indicates the strength of that component in the original



2.4 FREQUENCY DOMAIN APPROACHES 12

signal. There is a version of the Fourier transform that works for discrete data such as ours, but unfor-

FIGURE 2.5: Fourier Transform of an astronomical time series. The peaks represent
the most significant periodic components. In this case the signal has two clear period-
icities.

tunately is sensitive to discontinuous regions. The Lomb Scargle Periodogram, introduced in (Lomb,

1976) and (Scargle, 1982), is a spectral decomposition that copes with this issue. The method involves

fitting a number of sinusoidal basis functions onto a dataset using least squares regression. The output

is a spectral decomposition of weighted sinusoids like the Fourier transform.

2.4.3 Wavelets

A wavelet decomposition for a time series is a transformation into a number of basis waveforms. The

Fourier transformation presented above is one such decomposition, but many other forms exist with use-

ful properties such as the Haar wavelet transform.
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The Haar wavelet decomposition produces a set weighted component rectangular shaped waves of de-

creasing granularity. The output of this process on a time series is given in 2.7.

FIGURE 2.6: The first 8 Haar basis wavelets.

FIGURE 2.7: A time series reconstructed from its Haar wavelet decomposition.

This transformation takes linear time in the length of the time series. As explored in (Popivanov and

Miller, 2002), The structure of the rectangular Haar wavelet makes similarity comparison for time series

very fast, an appealing property for the large data volumes involved in this research. Unfortunately, Haar

Wavelets are still inflexible under astronomical time series distortions, but could possibly be utilised for

similarity search with a non-Euclidean distance measure.

2.4.4 Phase Invarant Kernels

Besides spectrum analysis, an approach to classifying periodic stars is to use a phase-invariant distance

measure. Phase invariant means that no matter what translation the time index is under, the distance
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between the two light curves is the same.

In (Wachman et al., 2009) a phase invariant Kernel is proposed for periodic astronomical time series. It

is immediately suitable for the nearest neighbour algorithm. The first proposed kernel is computed for

two time series x and y as:

K(x, y) =

n∑
i=1

ex·y+i

That is, the exponential of the dot products for all possible discrete alignments of the two time series.

This measure gives much higher scores to those time series for which there exists some very close align-

ment.

More interestingly, with some modification this kernel is also suitable for use in a support vector ma-

chine. With this approach the authors get excellent results a dataset of real light curves with accuracies

of greater than 99%. The kernel score is fast to compute with a computational bound of O(n log n).

The authors do not address the issue of amplitude scaling and classify with full light curves, so there

are still some complications for our problem that this approach does not cover. Nevertheless, the use of

handcrafted kernels for time series is an interesting one, explored further in Section 2.5.1.

2.5 Time Domain Analysis Approaches

Time series analysis which works directly with the time indexed data is called time domain analysis.

The simplest possible classification method, nearest neighbour classification, was already mentioned in

Section 2.1 when discussing distance measures for time series. Wavelets and shapelets can be used as

features for generic learners such as support vector machines and neural networks. Additionally, those

same machine learners can be applied directly to the data for classification.

2.5.1 Support Vector Machines

Support Vector Machines are machine learning tools that work by computing a so-called maximum

margin that separates two classes in a feature space. A simple example of a support vector machine

working in euclidean space is presented below. Multi class classification is possible by feeding a test
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case into an ensemble of binary classifiers, facing them off against each other in a tournament style. The

winner of the tournament is chosen as the classification for that test case.

FIGURE 2.8: Separation margin for two classes (blue and red dots) produced by a
support vector machine

A simple suggestion to use one of these SVM ensembles in our task would be to represent a time series

with n time indices as a vector in n dimensional Euclidean space. A test class would be fed into the

ensemble and whichever time series class it most closely resembles in Euclidean distance would be

chosen as the label. Of course, this approach has all the problems that the Euclidean distance measure

has as outlined in 2.1, But classification would be faster (and possibly more accurate) than the nearest

neighbour algorithm.

A modification of the SVM algorithm that is very relevant to our task is outlined in (Shimodaira et al.,

2002) and (Bahlmann et al., 2002). In this paper a kernel is developed which uses the dynamic time

warping distance of two time series. Kernels can be used to transform time series into points in a

new feature space. The SVM algorithm can modified to separate these points if the kernel has certain

properties. The proposed kernel unfortunately is not completely suitable (it is not positive semidefinite)

and cannot be expected to work properly, but it nevertheless gives comparable performance to Hidden

Markov Models on speech and handwriting classification datasets in these two papers. This notion of a

kernel designed explicitly to have the distance measure properties we need for our time series is worth

exploring further.
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2.6 Temporal Grammars

2.6.1 Introduction

Astronomical time series have forms which make them distinct from each other and from background

noise. Peaks, grades of slopes, valleys, bumps and other local features characterise each class. Humans

are good at discerning these forms, but to train a machine learning classifier requires some kind of

language to express the substructures - a temporal grammar. This Section discusses feature extraction

methods for temporal grammars that are both robust for classification and are human interpretable - they

can be easily adjusted and reapplied. There are limitations to this technique for our problem in that any

features extracted must be invariant to the in-class distortions of astronomical time series. This may be

possible if the features are sufficiently abstract.

2.6.2 Early Temporal Grammars and Basic Approach

Early work in this area consists of approximating a pattern using simple shapes, for example, straight line

segments as in as in (Keogh and Pazzani, 1998). One attempt at a generalisation of temporal grammars

is found in (Olszewski, 2001), and this is a good introduction to the end-to-end approach. This paper

utilises a grammar of {constant, straight, triangular, trapezoid, sinusoid, exponential} to the task of pat-

tern representation. This approach is very similar to the shapelet approach except that these features are

more abstract, allowing potentially for modifications that cope with stretching and scaling more easily

than shapelets. Additionally, the simplified nature of grammar components means that comparing fea-

tures amongst time series is much faster. Dynamic programming is used to decide on optimal partitions

of the pattern by finding the minimal error choices of substructure pieces. These substructures are then

represented as numerical feature vectors which are fed into a standard machine learning classifier. The

implementation was run on complex non-linear time series datasets including ECG (Electrocardiogram)

data.

The paper implements and trials a feature extractor, comparing it with feature extraction methods based

on wavelets and fourier transforms. The temporal grammar approach was competitive, and better in

many cases. Unfortunately, extraction of these features is a slow process and this approach will unlikely

be feasible for time series data streams.
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FIGURE 2.9: Components of temporal grammars used in the Olszewski paper

2.6.3 Recent Improvements and Distortion-Invariant Forms

In (Kadous and Sammut, 2005) a more abstract temporal grammar is proposed. In this case, not based on

parameterised curve fitting but on more general pattern substructures including plateaus, increasing and

decreasing sections and local maxima and minima. The grammar can be extended but it already quite

powerful with those features alone. A classifier is built by constructing a decision tree from features

extracted from training samples.

The Kadous temporal grammar is applied to similar datasets as in Olszewski: time series and a tem-

poral representation of sign language expressions. Both datasets are highly nonlinear. Accuracy around

the average for professional cardiologists is achieved, notably without any expert background knowl-

edge introduced into the model. The model also outperforms a Hidden Markov Model implementation

slightly, with the added bonus that the rules produced are human interpretable (HMM training states are

not).

Since the features are more abstract than the parameterised curves of the previous section, proposals

for dealing with amplitude scaling and warping seem feasible. For an example, one could look at the

distributions of local maxima and minima to find likely matches, then search for constant factor differ-

ences in their amplitude for confirmation, similarly for plateau length and height. If an algorithm for
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rapid extraction of features from time series streams were developed, a similar approach could be used

in solving this problem.

2.7 Motifs and Shapelets

2.7.1 Introduction

Motifs are defined across the domain of pattern matching as subsequences that occur frequently within

either a singular sequence, or a collection of sequence objects. Shapelets (Ye and Keogh, 2009) are a

related concept to motifs, and are defined as subsequences found in a collection of sequence objects that

discriminate best between the classes in that collection.

FIGURE 2.10: Figure of a motif in a time series taken from Lin et al. (2002)

Motifs and shapelets are of interest to addressing the problem posed in this thesis because they contain

information about an astronomical transient without any reference to a start or end point for the event,

a complication encapsulated in the subsequence distortion. Attempting to match a full time series

from our training data to a fraction of a complete event light curve suffers from a variety of problems.

Distance measures such as the Euclidean and Dynamic Time Warping distance (see 2.1 suffer greatly

in the presence of noise and missing data. They are also not well defined when the test case is an

incomplete version of the training curve. Classification methods such as Gaussian processes, support
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vector machines as well as many potentially useful features such as the Haar wavelet transform require

advanced knowledge of the start and end points of an event.

Additionally, because subsequences which are best at discriminating a particular class from others are

also those which are less likely to be totally corrupted by added noise, we can expect an improvement

in accuracy over standard distance measures when noise distortion is present.

Finally, although not a distortion explicitly examined within our experimental framework, in a real-

world context both motifs and shapelets will be helpful in coping with local variations in training data.

Finding regions of light curves that are consistent in structure within a class as opposed to regions of

high variability decreases inter-class confusion in the classifier. Local variations are exhibited by some

of the light curves in our experimental dataset, in XRBs and both kinds of flare stars. Strict definitions

of motifs in the context of time series lead to algorithms for their extraction and use in classification.

2.7.2 Motifs

Algorithms for motif extraction are well developed in the field of Bioinformatics, where motifs are

defined as frequently repeated strings in long sequences of the discrete symbols ‘G’, ‘A’, ‘T’ and ‘C’

representing DNA. The maturity of these algorithms influences the approach in Lin et al. (2002) which

utilises the Piecewise Aggregate Approximation to transform a time series to a symbolic representation.

Once a sequence of discrete symbols the aforementioned algorithms are made applicable for motif ex-

traction. There are complications to this approach however, in that the PAA transformation is not always

a good representation of the original time series. This is especially true in the presence of noise. An ad-

ditional issue is that no consideration is given to the meaning of adjacency between symbols. Adjacency

is meaningless for DNA, but very important for time series data.

Motifs are useful in a context where large amounts of a sequence are highly variable within or indepen-

dent of the class of event producing the sequence (as in DNA). In real-world astronomical data this may

well be the case, but in the context of our simulated data the light curves are very generic within a given

class. Under these definitions of similarity and frequently occurring subsequences then, it is very likely

a motif finding algorithm would declare the entire sequence as a motif for a class! What is needed is a

slightly different idea: a subsequence which not only occurs frequently within a particular class, but also

one which does not appear in any other classes within a multi-class classification context. The concept

of a shapelet (see below) meets our requirements.
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2.7.3 Shapelets

The idea of shapelets, first presented in Ye and Keogh (2009), is to find subsequences in time series

that are maximally discriminative amongst the classes of the dataset. The algorithm proposed in this

paper gives a brute force approach to extracting shapelets from a dataset, using entropy as a natural

choice of measuring inter-class discriminative power. Once extracted, shapelets can be incorporated

into classification in a variety of ways. The Ye paper proposes a decision tree approach where logical

rules using the (Euclidean) distances of each of the shapelets extracted from the dataset to a test case are

used to determine its class label. Another obvious approach is to use the nearest neighbuor algorithm

combined with any sensible distance measure such as subsequence Euclidean distance or constrained

Dynamic Time Warping (see Section 2.1).

FIGURE 2.11: Figure of time series shapelets extracted from time series representing
arrowheads, taken from Ye and Keogh (2009)

Shapelets are extracted as follows: For every single subsequence of any length in the dataset, the subse-

quence distance (see section 2.1) is computed to every element of the dataset. This collection of distances

is split into two subsets Dleft and Dright by user specified threshold τ . The τ parameter determines the

variance allowed for a particular shapelet being extracted from the dataset. The expressiveness of the

shapelet within a class is then measured by the information gain:

I(s, τ) = E(D)− N1

N
E(Dleft)−

N2

N
E(Dright) (2.1)

where N1 = |Dleft|, N2 = |Dright|, and E(D), the entropy of a dataset, is defined as:

E(D) = −
C∑
i=1

ni
N
log(

ni
N

) (2.2)

where ni is the number of time series labeled with class i and is C the number of class labels in the

dataset.
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Choosing good shapelets for the purposes of classification simply involves choosing those which have

the highest information gain. Ties (or close ties) can be resolved by looking at the actual distances across

the split of Dleft and Dright. The Ye paper proposes a suitable method for doing this. The threshold

τ is context-specific. A too tight or too loose choice of this parameter will give no sensible outputs.

For our purposes visual inspection of the output will serve fine, but if necessary good thresholds could

be determined automatically by searching for values that give shapelets meeting a predefined minimum

information gain.

Unfortunately since our dataset has very high intra-class uniformity, this approach will, like motif find-

ing algorithms, most likely return an entire training sequence as the most discriminative subsequence.

Short, expressive subsequences are more likely to be robust to noise and are important for on-line and

subsequence classification. Extending the Ye shapelet extraction algorithm to have a range of lengths is

trivial, but what lengths are useful for the purposes of classification will need to be found by experiment.

The work in Ye and Keogh (2009) is extended in Mueen et al. (2011), giving a faster algorithm for

finding shapelets. The improvement comes both from the caching of distance computations and early

abandonment of shapelet evaluation using a theoretical limit on information gain difference for adjacent

subsequences (subsequences that are mostly overlapping). Taking advantage of this improved perfor-

mance, the authors also propose an extension of the classification component of the Ye paper. This

extension involves using combinations of shapelets linked by the and and or logical operators, meaning

respectively both or either shapelet provides good discrimination to a class (see figure 2.12). Finding

these logical combinations fits naturally into the shapelet extraction algorithm by evaluating the and and

or respectively as the maximum and minimum of the information gain of the individual components in

the expression. Whether or not this modified approach will improve classification on our dataset depends

on how distinct each shapelet is to each class, and will need to be tested by experiment.

2.7.4 Shapelets and streams

Although this thesis involves classification of static data objects mimicking a sliding window approach,

the ASKAP telescope array in will involve a data stream. It is worth including into this literature review

then the work in Xing et al. (2011). This paper takes the definition of a shapelet outlined in Ye and

Keogh (2009) and gives a measure of quality in earliness of classification.
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FIGURE 2.12: Figure of logical shapelets providing a better discrimination amongst a
dataset with similar subsequences, taken from Mueen et al. (2011)

2.7.5 Summary

In summary, shapelets are clearly preferable to motifs both in the context of this thesis and in real-world

astronomical data. In Ye and Keogh (2009) and Mueen et al. (2011) both clear definitions of shapelets

and fast algorithms for their extraction are laid out. Classification is proposed using decision trees,

but nearest neighbour with a suitably defined distance measure such as subsequence distance (see ??)

would work as well. They are potentially useful both as a stand-alone classification method, and for

incorporating as features into a complex feature-extraction based classifier.

2.8 Astronomical Time Series Classification

Besides many generic approaches to classification presented so far, there are approaches that are astron-

omy specific. The work presented in (Richards et al., 2011), demonstrates a simple set of features that

may be useful in providing additional discrimination amongst astronomical time series. The features

include the standard deviation of the measurements, the distribution of flux amongst linearly spaced

buckets across the intensity of the measurements, the maximum and minimum changes in the light

curve, and many other simple and fast to compute properties of the data. These non-periodic features

provide a 4% improvement in the error rate for that task, the classification of variable stars. When much

of the light curve data is shape based (rather than spectral), these simple features should play a much

larger role in classification.
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2.9 Summary and Possible Research Approaches

Literature from many domains involving time series analysis was reviewed, all giving partial solutions to

the astronomical time series classification problem. There are a few promising approaches that emerge

from this review. The first is to develop an effective distance measure or a Kernel that copes with

distortions effectively, and then to apply the Nearest Neighbour algorithm or a feature based classifier

such as a Support Vector Machine. No perfect distance measure exists in literature surveyed so far, but

several come close, such as Longest Common Subsequence. A simple modification may sufficient to

get a practical solution to the problem. Gaussian processes are appealing because they handle missing

data and noise naturally but have a high time complexity and are will not be able to classify transients

that do not have defined start and end points. Feature based classification using any supervised classifier

and features taken from the wavelet transforms and statistical features from (Richards et al., 2011) is the

most promising classification approach as it is extensible and can incorporate features that capture the

diversity of structural properties that appear in astronomical transients.



CHAPTER 3

Experimental set-up and data simulation

3.1 Introduction

The question to be addressed by this research is how effective time series classification algorithms will

be on the data collected by the ASKAP telescope array. ASKAP will begin operations in 2012 and

in existing astronomical datasets, the systematic properties of the survey dominate over transient be-

haviour. The sampling methods are inconsistent, often sparse, and the data quality typically far worse

than that which ASKAP will produce. Since there is no suitable existing dataset representing the range

of phenomena that we expect to see with ASKAP, a set of simulated time series based on models of tran-

sient events has been created. Distortions will be applied to these simulated light curves to simulate the

ASKAP data conditions and to assess potential classification approaches. These models do not perfectly

represent real world transients, but are sufficiently similar so that they challenge the classification algo-

rithm in the same way. By modifying the type and severity of the distortions applied the simulated data,

knowledge about the practical classification of survey classification can be gained. Any classification al-

gorithm for transient events can be inserted into this framework and evaluated. This understanding of the

complications of on-line classification will inform algorithm choices in the VAST pipeline (Figure B.1).

3.2 Transient types

The Universe contains a vast array of transient phenomena, some of which are well understood such

as Supernova events, and others that are yet to be explained. For this project I have included seven

simulated transient types that are representative of the kind of phenomena expected to be encountered

by the VAST pipeline. The models for these simulations were provided by Kitty Lo (VAST memo in

prep).

• Extreme scattering events (ESE)

24
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• FSdMe flare stars (FSdMe)

• FSSCVn flare stars (FSRSCVn)

• Supernovae (SNe)

• Novae

• X-Ray binaries (XRB)

• Intra-Day Variables (IDV)

These 7 simulated classes are combined with a non-transient class (BG) representing a constant source

with Gaussian noise added. Figure 3.1 shows samples of the undistorted simulated transients in the

dataset.

ESE BG XRB FSdMe FSRSCVn Novae IDV SNe

FIGURE 3.1: Samples of undistorted light curves taken from the simulated transients
in the dataset

3.2.1 Description of the transients

Extreme scattering events (ESEs) are a lensing effect on the light from stellar objects produced by

the passage of compact objects between the source and earth in the interstellar medium. They are

characterised by a wobbling of the light curve as the object passes over the path. An example of an ESE

event collected in the real world is shown in 3.2.

3.2.2 Extreme Scattering Events

Intraday variables (IDVs) are continuously and slowly varying sources that have light curves similar

to those shown in 3.3. Flare stars like the FSdMe and FSRSCVn classes are constant sources with

periodic or unexpected jumps in intensity called flares. Supernovae are enormous explosions produced

by the collapse of large stars at the end of their lifecycle and are characterised by a sudden exponential

increase in flux followed by a slow decay, usually emerging out of background noise. Novae are similar

in structure but represent less dramatic stellar events. They have a much more gradual rise and decay.

X-ray binaries are binary star systems where one partner is a very dense star or a black hole. They emit

large amounts of energy as X-rays, but also in other spectra.
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FIGURE 3.2: Figure of real world ESE data taken from Walker and Wardle (1998)

These classes do not represent all the potential transients that could arise in reality, nor are they com-

pletely accurate representations. Their structures however are sufficiently similar to the real thing to

afford a preliminary investigation into the difficulties of machine-learned classification.

3.3 Data quality variables

In order to examine the performance of classifiers in terms of the different data quality issues present in

the real world, classification was with a variety of distortions applied, both one at a time and simultane-

ously. Classification performance will be assessed while applying each of these distortions individually
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FIGURE 3.3: Figure of real world IDV data taken from Lovell et al. (2008)

and altogether. It is likely that the combination of multiple distortions will compound the individual

losses in classification performance.

3.4 Implementating lightcurve distortions

The order in which multiple distortions are applied is important, and the exact way distortions are applied

within each class must be carefully done to ensure to ensure there is no unusual influence on the results.

Distortions are applied in the order and with the options outlined in the table below. The output of step

n is fed into step n+ 1.

3.4.1 Simulating a power law distribution

Centered is performed by subtracting the mean from the light curve and dividing by its standard devia-

tion. The original signal should have no outlier points or noise so this should remove amplitude scaling
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Incompleteness Data arrives as a stream and early classification is important for deploy-
ing telescopes around the world for more detailed study of an interesting
event. Varying the percentage of the total light curve that is available is
important for assessing the viability of on-line classification.

Noise Noise is a consistent factor in telescope observation. Signal noise results
from atmospheric distortions, intrinsic equipment inaccuracy, and objects
in the interstellar medium that interrupt light from distant objects.

Missing data Due to poor weather conditions or competing demands on telescope time,
some data will simply not be available. Missing data has been modelled
by removing small chunks (5-10%) of the full dataset, randomly dis-
tributed.

Amplitude scaling Due to the distribution of stellar events, as well as intrinsic differences
in the brightness of these events, the actual intensity of points in the sig-
nal is not meaningful, only the intensity of a point relevant to the other
points in the signal. The average intensity of observed signals corre-
sponds roughly to a -2.3 power law distribution. This will be compared
to light curves which are centered (mean subtracted and divided by their
standard deviation) to examine the effect that the power law distribution
has on the classification effectiveness.

Signal variation All the light curves used in classification will have variation in the way
in that the light curves unfold. For light curves that are better defined
by their shapes such as ESEs, differences in the strengths of slopes,
time between maxima and minima will change. Periodic signals such
as IDVs will have differences (but also similarities) in their characteris-
tic frequency spectra. It is not possible to easily change or quantify the
amount of variability within the dataset, but both differences in underly-
ing frequency and structure will be present.

TABLE 3.1: Data quality conditions

Step Distortion type Amounts used
0 Raw signal from model none
1 Distribution type Either centered or -2.3 power law
2 Noise 0, 0.5, 1, 1.5 or 3 times the signal standard deviation as gauss-

ian distributed noise
3 Signal available 10, 25, 50, 75, 90% of light curve data
4 Gapify signal 10, 25, 50, 75, 90% of signal randomly as 1, 2, 5% chunks
5 Stratification and classification none

TABLE 3.2: Details of data distortion introduction

as a factor in classification.

The power law is implemented by drawing random numbers uniformly between a−2.3
l and a−2.3

h , where
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these values indicate the lower and upper bounds of the amplitudes desired in the power law distribution.

The random value so drawn taken to the power -2.3 giving an amplitude in the desired range with values

probability distribution corresponding to the power law.

3.4.2 Changing signal to noise ratio

Noise will be introduced into the signal by computing the signal variance and adding gaussian noise to

0.5, 1, 1.5 or 3 times that amount on top of the signal.
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FIGURE 3.4: ESE light curves under the noise distortion

3.4.3 Removing part of the signal

This step is very straightforward. The latter k% of the signal is discarded and only the first part kept.
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FIGURE 3.5: ESE light curves under the available distortion

3.4.4 Introducing gaps into the signal

This part must be done after a contiguous chunk of the signal is removed as in the previous step. This

involves discarding randomly sized chunks at 1, 2, or 5% of total signal length (before step 3) at random

locations, until the desired amount of data has been taken out. The procedure does not guarantee that the

chunks so removed will not overlap (so larger contiguous sections may be removed than the individual

chunks.

For more examples of the light curves with distortions applied refer to Appendix A
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FIGURE 3.6: ESE light curves under the missing distortion

3.5 The dataset and classification

A dataset of 200 of each of the transient classes for a total of 1600 light curves is used to evaluate a

classifier with 10-fold cross validation. Each light curve has 500 data points with the transient event

possibly being shorter but situated at the start of the time series. This classification approach assumes

that an earlier step in the VAST pipeline has detected a transient and an equal sized sliding window of

data is provided for classification. Classification was performed on each of the single distortion steps 2,

3 and 4 outlined in 3.2 as well as a combined distortion set of 50% missing data, 0.75 noise and a power

law distribution. The results of classification were returned as F-score and standard deviation of F-Score

for each of the 10 cross folds as well as confusion matrices.

3.6 Summary

In this section I outlined a classification framework I implemented for evaluating the impact of both

singular and combined distortions present in astronomical data on the performance of a classifier. I used

simulated light curves provided by Lo (VAST memo in prep.) and implemented software to apply the

distortions. All the experiments in this thesis used this framework.



CHAPTER 4

Supervised classification of astronomical Transients

4.1 Overview

Supervised classifiers are an extensible way to incorporate a variety of numerical features of a data

object into a single classification scheme. In the context of classifying the transients in our dataset

a number of features might be useful, such as properties of their flux distributions or their frequency

domain representations. The first question addressed by this chapter is how well wavelet and statistical

features can classify the dataset. Secondly I investigated how much classification performance varies

under the introduction of distortions. The experiments also assessed the extent to which misclassification

is caused by information loss in the light curve versus the inadequacy of our features for coping with

distortions. Finally the experiments explored how the shift in feature values when using undistorted

training and distorted test sets affects performance. These questions are critical to evaluate the usefulness

of both the supervised classification approach and the features used for classifying transients in the

VAST pipeline. The Random Forest supervised classifier is used because because it demonstrated a

superior classification performance in preliminary experiments. Classification performance is measured

by the F-Score, microaveraged across each class, and by confusion matrices for selected feature sets and

distortion amounts.

4.2 Method

This experiment follows the experimental framework outlined in Chapter 3. Each experiment consists

of 10-fold cross validation with the test set distorted according to some parameter and with the training

set both with equal amounts of distortions applied, and undistorted. The exception to this is in the exper-

iment exploring the available distortion, where both the training and test data have their signals cropped

to the same extent. This is justified because when using a sliding window approach to classification the

31
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length of the transient will be known. For other distortions this is not possible since the amounts of noise

relative to the signal strength varies for each transient type. Additionally, the amount of missing data we

in a test case will vary constantly. For details on how the distortions are applied, refer to Chapter 3.

The supervised classification method used is the Weka (Hall et al., 2009) implementation of the Ran-

dom Forest (Breiman, 2001) classifier. The Random Forest is a variant of the decision tree classifier.

Decision trees produce a class output by applying a set of logical rules on the values of the features. In

the Random Forest, a collection of decision trees (called a Forest) working on a few randomly chosen

features each provides a vote for the class of a test case. The most popular voted class is chosen as

the label for the test case. Voting improves classification when some of the features disagree on the

correct class. One concern with the use of Random Forests is that they are known to have a tendency

to overfit training data. Given that a likely cause of misclassification is the shift of feature values under

distortions, I ran a preliminary experiment to compare classification performance under the missing dis-

tortion of the Random Forest with some other classifiers that are known to be more robust to overfitting.

The classifiers compared were the Support Vector Machine (SVM) classifier with both the RBF and lin-

ear kernel. The Random Forest outperformed the other classifiers for even large amounts of missing data.

As per the evaluation section in Chapter 3, experimental results are presented as confusion matrices

and plots of F-score versus the level of the distortions applied within each experiment. Each plot of

F-Score includes a subtractive analysis of the features by the removal of certain logical subsets. These

results allowed me to determine which features were most important for classification and by how much;

the relationship between the features and the various transient classes; and finally how effective the clas-

sification approach is overall.

Determining which factors contributed the most to misclassification is not always possible. It is hard to

assess for example if the introduction of noise into a light curve leads to misclassification simply because

the original signal is completely lost, or because the features are incapable of identifying the underlying

structures hidden by noise. The analysis in some places makes subjective judgements about how well a

human expert could classify a distorted light curve with reference to the figures in Appendix A.
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4.3 Features

The features used in the experiment are outlined in Table 4.1 and are organised into logical subsets. The

features included statistical properties of histograms of the light curve flux; the same statistical properties

applied to a gradient histogram produced from a linear segmentation; the coefficients of a Haar wavelet

transform; and the frequencies corresponding to the strongest peaks of a Lomb-Scargle periodogram.

An important component of feature extraction for the transient classification problem is that all light

curves were z-normalised before feature extraction took place. Z-normalisation consists of setting the

mean of the light curve to zero and its standard deviation to one:

fi =
fi −mean(L)

std(L)
i = 1 . . . N (4.1)

where fi is the ith datapoint out of N in the light curve L. This was done in the hopes of eliminating

amplitude scaling and restoring the flux values of the original light curve. Z-normalisation has been

applied in other work such as Loh et al. (2010) as a way of giving amplitude invariance to a time series

classification approach. When data is missing or noise has been applied then the scaling will only give

an approximation of the original flux values. When the distortions are severe this approximation will

become worse.

4.3.1 Flux statistical features

The simplest features that could be useful in discriminating between astronomical light curves are statis-

tical properties of the distribution of the magnitude or flux of its elements. Statistical features were used

effectively to classify periodic astronomical light curve data in Richards et al. (2011). Information about

the variability and dynamics of a transient is encoded in the shape of a histogram produced from the flux

values. As with all feature extraction approaches in this thesis the light curves were z-normalised before-

hand to eliminate the effects of amplitude scaling in the signal. The statistical properties computed are

the median, kurtosis, skew, minimum and maximum, and the fractions of positive and negative elements

of the flux set falling within predefined fractions of the standard deviation. The shape of the histogram

should be affected less under a noise distortion than features working on a point-by-point basis, such as

distance measures.

Skew and kurtosis are two statistical measures of the shape of a data distribution. Skew measures the

degree of evenness in the distribution either side of the mean and for a set of flux values f with mean f̄
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Feature set Feature Description

statistical

Flux median Median deviation of flux distribution
Flux skew Skew of flux distribution

Flux kurtosis Kurtosis of flux distribution
Flux minimum Minimum of flux distrubtion
Flux maximum Maximum of flux distribution

Positive flux percentiles Fraction of positive flux values within inc
of the mean, for inc 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.75, 1, 1.5, 2, 3

Negative flux percentiles Fraction of negative flux values within
inc of the mean, for inc 0.05, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.75, 1, 1.5, 2, 3

segmentation

Gradient median Median of gradient distribution
Gradient skew Skew of gradient distribution

Gradient kurtosis Kurtosis of flux distribution
Gradient minimum Minimum of gradient distribution
Gradient maximum Maximum of gradient distribution

Gradient positive percentiles Fraction of positive gradient values
within inc of the mean, for for inc in
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 1,
1.5, 2, 3

Gradient negative percentiles Fraction of negative gradient values
within inc of the mean, for inc in 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 1, 1.5, 2,
3

haar Coefficients of Haar wavelet transform First 16 Haar wavelet transform coeffi-
cients

spectral Lomb-Scargle periodogram frequencies Frequencies corresponding to strongest 5
Lomb-Scargle periodogram peaks

TABLE 4.1: Core feature set and subsets used in the classificaton experiments in this chapter

the skew s is computed as:

s(f) =

1
n

n∑
i=1

(fi − f̄)3

( 1
n

n∑
i=1

(fi − f̄)2)
3
2

(4.2)

Kurtosis measures the ‘peakiness’ of the flux distribution, or, how strongly flux points are centered

around the mean. For a flux sample f with mean f̄ the kurtosis k is computed as:

k(f) =

1
n

n∑
i=1

(fi − f̄)4

( 1
n

n∑
i=1

(fi − f̄)2)2
(4.3)
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Figure 4.1 shows two sample light curves, their flux histograms and the corresponding skew and kurto-

sis. It illustrates the discriminatory power of these simple features.

Skew is highest (in magnitude) for sources with sudden peaks and troughs emerging from background
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FIGURE 4.1: Figure showing flux histograms the ESE and SNe transient classes with
the skew and kurtosis shown. There is a substantial difference in the skew and kurtosis
betwen the classes demonstrating how these features capture the variability of the
source.

noise in one direction. As a result, the Supernovae light curve has a very positive skew. The ESE has

a slightly negative skew because of the relative intensity of the central dip to the peaks either side. For

sources that are slowly varying or consistent, the skew will be closest to zero.

Kurtosis is highest for signals that are extremely consistent or have very sudden variations. Signals

that oscillate a great deal with have much lower kurtosis. Again, the supernovae, characterised by sud-

den sharp increases in flux, has a very high kurtosis. The ESE also has sudden variations, but not as
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strong as the Supernova. For most light curves the flux distribution will not be very similar to the nor-

mal distribution. Skew and kurtosis not always be inadequate to accurately describe the shape of the

histogram and the way flux is spread across it.

A feature that does encode the entirely of the histogram of a light curve are the fractions of both the

positive and negative components of the (z-normalised) flux lying within predefined increments of the

standard deviation from the mean. This feature is very similar to the histogram based classification of

time series proposed in Chen and Özsu (2005), as well as a similar approach involving bands around the

median of the flux in Richards et al. (2011). Each increment’s flux percentile forms a single feature and

the group of increments form a full feature set for the positive and negative components of the histogram

respectively. The feature is computed as the fraction of the flux lying within both positive and negative

0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.75, 1, 2, and 3 times the standard deviation from the mean.

4.3.2 Linear segmentation features

In noisy, gappy data, extracting information about the time-domain behaviour of an event is difficult. A

potential method for refining poor quality data into a useful set of simple shapes outlining its behaviour

is the piecewise linear segmentation proposed in Keogh et al. (2001). A bottom up segmentation of a

time series into linear functions is produced, starting from every pair of adjacent points and progressively

merging those points which give the lowest error in a line of best fit until the desired number of segments

is reached. A visualisation of the algorithm on a light curve from our dataset is presented in Figure 4.2.

A histogram of gradients is built from the linear segmentation. Each segment of a particular gradient

contributes a unit of that gradient value to the histogram for each time index falling under it. Note that

this means longer events with the same structure should have the same histogram, making this feature

time-scale invariant provided the start and end points of the event are known. All of the features extracted

for the feature histogram were also extracted for this gradient histogram, as outlined in Table 4.1.

4.3.3 Haar coefficients

The Haar wavelet transform produces a representation of the variance in a signal that is robust to noise.

Square shaped Haar wavelets of decreasing granularity are fitted to data, the coefficients of each wavelet

providing a means to reconstruct an approximation of the original signal. Provided that the width of the

signal being transformed is the same, coefficients can be compared to evaluate the similarity of a signal
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FIGURE 4.2: Left: Linear segmentation of a light curve from our dataset. Right: Linear
segmentation for the same light curve with 1.5 times its variance added as Gaussian
noise. The underlying structure is clearly revealed by the transformation.

and its variance at different levels. The first 4 levels of granularity of Haar wavelets were used, giving

FIGURE 4.3: Reconstruction (indicated by the squarish waveform) from Haar wavelet
coefficients of a signal (the sinusoidal waveform).

15 features in total (1 for the 1st level, 2 for the 2nd, 4 for the 3rd, and 8 for the 4th) corresponding the

coefficients of each wavelet. The transform requires that all datapoints are equally spaced in the time

domain, the width of the signal is a power of 2, and there are no gaps. Both missing data and the short

ends of the signal with be filled with 0s.
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4.3.4 Lomb-Scargle periodogram

An implementation of the Lomb-Scargle periodogram based on the work in Press and Rybicki (1989)

was taken from astropython1 This implementation allows us to extract as features the phase of significant

peaks in the light curve and the intensity on these peaks. Computations were performed on z-normalised

light curves and the strongest 5 frequencies in the signal were used as features.
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FIGURE 4.4: Spectrum produced by Lomb-Scargle periodogram for sample light
curves. The Novae classes’ strongest periodicities are at 200 days whereas the ESE
has strongest periodicities of 40-60 days. These differences demonstrate the effective-
ness of the periodogram in discriminating amongst light curves.

1http://www.astropython.org/blog/2010/9/Question-period-finding-packages-in-python

http://www.astropython.org/blog/2010/9/Question-period-finding-packages-in-python
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4.4 Experiment 1 — Undistorted data

This experiment assessed the usefulness of the features in separating the light curves without any distor-

tions applied to the test set. Classification was performed with subtractive analysis of each of the feature

sets and the results are presented as an F-Score and confusion matrix for each subtracted feature set.

The results of these experiments give an upper bound on classification performance before distortions

are introduced. The subtractive analysis shows the criticality of any particular feature set for achieving

accurate classification.
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FIGURE 4.5: Figure of confusion matrices for the core classification features on undis-
torted light curves. The confusion matrices show that classification is near perfect unless
the statistical feature set is excluded, which leads to misclassifications of the BG and
FSdMe classes as one another.

The classification results for the combined set of features is given in the identical confusion matrices in

the left column of Figure 4.5, and in Table 4.2. The results show that every class has more than 94%

of test cases classified correctly, with a mean of 97%. The F-Score for the combined feature set is also

0.97, indicating both very low false positive and false negative rates. This means that in terms of the
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Feature set F-Score std(F-Score)
core 0.97 0.010
core - {segmentation} 0.96 0.02
core - {statistical} 0.89 0.02
core - {haar} 0.97 0.01
core - {spectral} 0.96 0.02

TABLE 4.2: F-Score, and F-Score standard deviations on the 10 crossfolds

structure of the classes alone the core feature set is capable of accurately classifying them. An upper

bound of 0.97 F-Score can be placed on all subsequent experiments.

To discuss the significance of each of the feature sets refer to the middle and right columns of Figure 4.5

and also to Table 4.2. An F-Score change for a feature set in the subtractive analysis is significant if it

differs from the core F-Score result by more than one standard deviation. Applying this definition to the

F-Scores and standard deviations in the table then, only the subtraction of the statistical feature set is

significant. Referring to the confusion matrix for the core - {statistical} experiment the misclassifica-

tions causing this drop are between the FSdMe and BG classes. FSdMe is misclassified as BG 40% of

the time, and BG as FSdMe 20% of the time. This misclassification likely occurs because the FSdMe

and BG classes are superficially similar (Figure 4.6).

The FSdMe is distinct from background noise only by unpredictable, sudden, and bright flares. The Haar

wavelet coefficients and Lomb-Scargle peak frequencies of the haar and spectral feature sets cannot

characterise structures that are not consistent in the time domain. The gradient feature cannot necessarily

descriminate the tall thin peaks in the FSdMe lightcurve from smaller scale peaks with the same shape

occurring randomly in the BG light curve. However, the histogram of flux values can be used to tell

them apart easily, as demonstrated in the stark difference in their forms in Figure 4.6.

These misclassifications demonstrate a vulnerability of the classifier to light curve structures that are

locally variable - the haar and spectral feature sets become uninformative. Relying on solely the statis-

tical and segmentation features to classify a class is not desirable since many transient classes in the real

world could have similar flux and gradient profiles with otherwise very different structures. Features are

needed which are locale-independent - that is, do not vary if the structure that characterises the class ap-

pears in unpredictable locations. These features need to explicitly encode these characteristic structures

unlike the time independent information in a flux or gradient profile. These requirements motivated the

introduction of the shapelet algorithm into the classification scheme in Section 5.
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FIGURE 4.6: Light curve plots and flux histograms of centered FSdMe and BG
lightcurves demonstrating the difference in the flux distributions. The BG flux dis-
tribution is much more even that that of the FSdMe
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4.5 Experiment 2 — Introducing gaps into the light curve

This experiment assessed the impact of introducing small, randomly distributed gaps into a light curve

on classification performance. 10, 25, 50, 75 and 90 percent of the signal was taken out in separate

experiments and classified using undistorted training data. Subtractive analysis of each of the feature

sets is provided as plots and confusion matrices. For this experiment only the confusion matrices for the

subtracted spectral and statistical as well as the combined core feature sets are of interest. The other

confusion matrices are omitted. The analysis concerns the extent to which classification performance is

affected by the use of differently distorted training and test sets as well as the loss of the information in

the light curve through the distortions.
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FIGURE 4.7: Plot of F-Score versus missing data with undistorted training data and
distorted training data. All feature sets lose F-Score quickly except for subtracted
spectral, only gradually falling until 50% missing data.
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FIGURE 4.8: F-Score versus missing data with equally distorted training and test
datasets. F-Score is consistent on all feature sets up to 90% missing data.
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FIGURE 4.9: Selected confusion matrices for the missing data experiment with undis-
torted training and distorted test data. The middle column of confusion matrices
shows that the exclusion of the spectral feature set improves classification performance
on the IDV, Novae and SNe classes for 50% and 75% missing data. The right column
shows the importance of the statistical feature set for correctly classifying all classes.
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Figure 4.7 shows classification results when using undistorted training and distorted test set sets. Com-

paring this plot to Figure 3 tells us how much the disparity in feature values using unequally distorted

training and test sets (I will refer to this as asymmetric and otherwise symmetric) affects classification

performance. At 50% missing data the best feature set for symmetric training/test sets has dropped by

less than 0.01. For the same amount of missing data the asymmetric test sets have an F-Score of 0.9 for

the best feature set, a drop of 0.07. At 75% missing data the differences are larger still with F-Scores of

0.9 and 0.67 for the symmetric and asymmetric classification scenarios respectively. These are substan-

tial differences in performance and indicate that the majority of misclassifications arise as the result of

the disparity in the feature values across the asymmetric training and test sets.

The F-score drop which is not the result of the training/test set decision can also be found in Figure 3

as the change in F-Score as missing data is increased. As stated earlier F-Score does not change sub-

stantially for even up to 50% missing data, the F-Score of 0.96 lying within a standard deviation of the

F-Scores at 0% missing data. Only 0.07 and 0.15 F-Score are lost for 75% and 90% missing data. Ex-

amining the remaining structure of the light curves at 90% missing data in Figure A.3 suggests that this

F-Score drop is the result of information loss and unavoidable. What this means then is that the key to

minimising the impact of missing data on classification performance is to solve this problem of training

and test set asymmetry.

The cause of the misclassifications is that the values of the features are changing under the introduction

of distortions. If the features were invariant to missing data, that is, their values are the same so long as

no information has been lost from the signal, then we should expect classification results similar to those

in Figure 3. Invariance to a distortion then is a desirable property of a feature. Examining the confusion

matrices in Figure 4.9 for our asymmetric train/test set experiment will give clues as to which feature

sets have the least and most invariance.

By far the most substantial increases in F-Score through subtractive analysis is for core - spectral, with

an F-Score increase of 0.15 at 50% missing data and 0.2 at 75% missing data. The confusion matrices for

that subtractive analysis compared with the combined core feature set shows misclassification occurring

the most on the Novae, SNe and IDV and XRB classes for 75% and 90% missing data. Mass is shifted to

essentially all other classes in the row indicating that the value of the feature is essentially unpredictable

as more missing data is introduced. The FSdMe, FSRSCVn, BG and ESE classes are probably less

severely affected because the classifier did not relate their highly locally variable structures to periodic

features with the undistorted training data. The spectral features show invariance to noise in the next
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experiment, so omitting them entirely is not the best course of action. A regression step to try to make

the test data look more like the training data could improve classification performance.

As in the previous experiment the statistical feature set is the most critical to good classification accuracy

for the asymmetric train/test missing data experiment. The confusion matrices in Figure 4.9 show that the

misclassification rates for every class increase with the removal of the statistical feature set. A histogram

remains a good approximation of itself when even a large fraction of its values are removed, so it is

not surprising then that the statistical feature set displays some invariance to missing data. Designing

features that are not just rough approximations under missing data but are very close approximations or

completely invariant will greatly improve classification performance.

In summary, the features used are still able to accurately classify the dataset with symmetric test data,

with > 0.9 F-Score for 90% missing data. The primary cause of misclassification then is the disparity

of feature values from undistorted training to distorted test sets. There are a few possible avenues to

improving this situation for missing data (but also may apply to later experiments):

(1) Pre-processing the test data to make it look more like the training data. For coping with missing

data options include a number of regression approaches. Two examples are simple linear inter-

polation and Gaussian Process regression. Explorations of the scalability and effectiveness of

such approaches are a topic for future work.

(2) Use features that are more invariant to distortions. The shapelet approach to time series classi-

fication might be a good candidate for invariance to missing data because it relies upon direct

matches to structures in the signal — not distributions across it.

(3) Assume the kind of distortions present in the test data and apply similar distortions to the

training data to reduce the strain on classifier rules. While it is perplexing to reduce the quality

of the training data in order to improve classification, Comparing Figures ?? and demonstrate

that this an effective approach. It is likely that this approach will be viable for ASKAP because

the amounts of noise and missing data will be difficult to know ahead of classification time.
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4.6 Experiment 3 — Limiting the amount of signal observed

This section assessed how early we can hope to classify the transient classes in our dataset. In this

experiment both the training and test data are cropped to a particular percentage from the start of the

light curve. Modifying the training data is acceptable for this particular kind of distortion since unlike

noise or missing data, in a sliding window classification context we know how much of an event has

transpired and what hence what training set to apply. The results here show that early classification is

102030405060708090100
Observed data

0.0

0.2

0.4

0.6

0.8

1.0

F-
S
co

re

core - {segmentation}

core - {spectral}

core

core - {statistical}

core - {haar}

FIGURE 4.10: Plot of F-Score versus observed data with equally cropped training
and test data. F-Score stays consistent up to 10% observed data

possible on the light curve collection provided there are no distortions and cropped training data are also

used. At least, there is an upper bound of at most 0.9 F-score to be placed on classification performance.

Up to 10% available data the F-Score does not change much from the results for the full light curve.

It is possible that the correct early classification of several of these classes is dependent on a subtle

structure that would be lost in realistic astronomical data conditions. A better test of each classes’ early

classification ability is in experiment 5, evaluating combined distortions.
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4.7 Experiment 4 — Modifying the signal to noise ratio

This experiment involves the addition of noise into our dataset by computing the signal standard devi-

ation and adding a fraction of that value as Gaussian distributed noise to the light curve. The fraction

of variance added becomes the light curve’s noise-signal variance ratio, very similar to the signal-noise

ratio used by Astronomers to describe how clear a signal is in noisy data. The magnitude of the noise-

signal variance ratio determines how likely the characteristic subsequences of a class are still present.

What this means generally for classifying our transient classes is hard to define, but an idea of just how

much of the signal remains can be found in Figure A.2 in Appendix A. Light curves at 0.5 noise still

have very clear structures and are still clearly identifiable by a human. The same is true for 1.0 noise but

the with the two flare star classes FSRSCVn and FSdMe beginning to look similar. The 1.5 noise only

the most distinctive structures remain. At noise 3.0 artefacts of the original signal are still visible but

manual classification becomes very hard. The first question to explore in this experiment is how much

the introduction of noise leads to misclassification with the same distortions applied to training and test

data i.e. how much information is lost as a result of noise. The second is to what extent the use of

undistorted training data and distorted test data causes misclassification, in light of the information loss.



4.7 EXPERIMENT 4 — MODIFYING THE SIGNAL TO NOISE RATIO 49

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Noise

0.0

0.2

0.4

0.6

0.8

1.0

F-
S
co

re

core - {segmentation}

core - {spectral}

core

core - {statistical}

core - {haar}

FIGURE 4.11: Plot of F-Score versus noise-signal variance ratio with undistorted
training data and distorted test data. The classification F-Score decreases rapidly
to 0.5 for the best feature set at 1.5 noise-signal variance.
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FIGURE 4.12: Plot of F-Score versus noise-signal variance ratio with equally noisy
training and test data. The plot shows a linear trend of F-Score as the factor of noise
is increased and is significantly higher than when using undistorted training data.



4.7 EXPERIMENT 4 — MODIFYING THE SIGNAL TO NOISE RATIO 51

Predicted

A
ct

ua
l

Noise core core - spectral core - statistical

0.0

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

A B C D E F G H

.99 .01

1.0

.00 .94 .02 .01 .02

.00 .99

.01 .97 .00 .00

.00 .99 .00

.01 .01 .01 .94 .02

.02 .01 .96

A B C D E F G H

1.0

.99 .00

.00 .89 .06 .00 .04

.00 .01 .94 .03

.01 .97 .01

.00 .99

.01 .02 .00 .92 .03

.04 .00 .00 .01 .94

A B C D E F G H

.78 .00 .2 .00 .00

.98 .01

.01 .88 .02 .03 .05

.4 .01 .58

.00 .99 .00

1.0

.00 .00 .01 .00 .95 .02

.05 .01 .93

0.5

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

1.0

.18 .74 .00 .00 .06

.01 .92 .00 .03 .01 .01

.04 .95

.06 .02 .9 .01 .00

.06 .01 .43 .26 .24

.01 .06 .15 .00 .77

.00 .63 .02 .05 .1 .19

1.0

.01 .8 .02 .15 .01

.02 .90 .04 .01 .01 .01

.00 .16 .82 .00 .00

.18 .04 .76 .01

.06 .00 .58 .2 .14 .01

.1 .02 .02 .15 .02 .66 .01

.00 .43 .26 .04 .11 .14

.80 .18 .01

.60 .37 .00 .00 .01

.01 .02 .77 .01 .05 .00 .12

.51 .00 .48 .00

.03 .93 .02 .02

.06 .01 .00 .30 .31 .26 .03

.01 .04 .13 .01 .67 .13

.01 .28 .11 .04 .55

1.0

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

1.0

.78 .15 .00 .06 .00

.36 .46 .13 .02 .02

.47 .06 .45 .00

.27 .01 .69 .01 .01

.55 .24 .09 .11

.16 .1 .18 .54 .01

.09 .53 .00 .21 .12 .04

1.0

.31 .34 .03 .30 .01

.54 .36 .01 .07 .00 .01

.51 .29 .12 .03 .03 .00

.86 .13 .00

.87 .12 .00 .00

.52 .08 .02 .03 .32 .01

.25 .39 .11 .13 .06 .04

.8 .19 .00

.00 .44 .45 .04 .01 .05

.05 .00 .68 .03 .12 .02 .08

.65 .00 .33 .00

.02 .05 .86 .01 .03 .01

.10 .00 .05 .01 .40 .17 .23 .02

.04 .00 .04 .00 .25 .01 .49 .15

.03 .00 .34 .3 .05 .27

1.5

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

1.0

.92 .03 .01 .02 .00

.78 .06 .14 .01 .00

.95 .01 .03

.47 .02 .47 .00 .03

.77 .15 .02 .05 .00

.38 .08 .16 .01 .35 .01

.39 .15 .30 .00 .13 .02

1.0

.48 .26 .03 .21 .01

.95 .02 .02

.95 .03 .01 .00

.95 .04

.97 .00 .02 .00

.91 .03 .01 .04 .00

.89 .04 .01 .02 .01 .01

.77 .01 .21 .00

.36 .55 .07 .01 .00

.15 .01 .49 .11 .16 .03 .04

.7 .01 .28 .00

.04 .11 .00 .74 .00 .05 .03

.27 .01 .07 .08 .31 .08 .12 .04

.05 .11 .02 .29 .01 .36 .13

.06 .00 .29 .03 .34 .07 .19

3.0

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

1.0

.91 .04 .02 .01 .01

.94 .05 .00

1.0

.68 .01 .25 .02 .04

.93 .05 .01 .00

.83 .00 .10 .06

.8 .01 .15 .03 .01

1.0

.57 .09 .09 .22 .01

.98 .01

.99 .00

.99 .00

1.0

.98 .00 .01

.97 .03

.79 .21

.02 .30 .51 .14 .01

.57 .11 .17 .1 .01 .02 .01

.78 .00 .21 .00

.25 .00 .12 .06 .42 .02 .08 .03

.66 .05 .18 .06 .00 .02 .02

.4 .00 .08 .08 .28 .02 .09 .03

.29 .15 .12 .29 .01 .06 .06

FIGURE 4.13: Selected confusion matrices with undistorted training data and noisy
test data. The left and middle columns show the strong trend of the statistical feature
sets’ inclusion to cause misclassificatons to the BG class. The right column shows
improved classification when statistical is excluded.
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Predicted

A
ct

ua
l

Noise core core - haar core - statistical

0.0

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

A B C D E F G H

.99 .01

1.0

.00 .94 .02 .01 .02

.00 .99

.01 .97 .00 .00

.00 .99 .00

.01 .01 .01 .94 .02

.02 .01 .96

A B C D E F G H

.99 .00

1.0

.00 .93 .01 .01 .00 .03

.01 .98

.01 .97 .00 .00

.00 .99 .00

.02 .01 .02 .91 .03

.03 .00 .01 .95

A B C D E F G H

.78 .00 .2 .00 .00

.98 .01

.01 .88 .02 .03 .05

.4 .01 .58

.00 .99 .00

1.0

.00 .00 .01 .00 .95 .02

.05 .01 .93

0.5

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.99 .01

1.0

.00 .84 .01 .01 .12

1.0

.01 .01 .92 .02 .01 .02

.03 .95 .01

.00 .05 .06 .85 .03

.00 .12 .00 .03 .02 .82

.99 .00

.99 .00

.00 .86 .01 .01 .11

.01 .98 .00

.01 .90 .04 .03 .01

.05 .94 .00 .00

.01 .04 .11 .68 .15

.00 .13 .01 .04 .09 .72

.71 .27 .01

.97 .01 .01

.00 .01 .73 .02 .04 .00 .00 .16

.46 .01 .52 .00

.00 .00 .9 .01 .01 .06

.02 .96 .00 .00

.02 .1 .84 .03

.00 .00 .17 .05 .00 .05 .70

1.0

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.97 .00 .00 .01 .01

1.0

.01 .71 .04 .01 .21

.02 .00 .02 .94 .00 .01

.01 .05 .81 .06 .04 .02

.05 .92 .02

.00 .01 .05 .12 .76 .05

.00 .15 .04 .07 .73

.97 .02 .00 .00

1.0

.00 .00 .68 .05 .02 .02 .21

.01 .01 .97 .00

.01 .02 .74 .14 .03 .05

.02 .00 .00 .08 .85 .03

.01 .02 .08 .11 .6 .17

.18 .02 .17 .62

.64 .00 .34 .00 .00

.98 .01 .01

.01 .02 .66 .02 .05 .23

.47 .00 .5 .00 .01

.04 .81 .06 .01 .07

.01 .94 .03 .01

.00 .01 .00 .06 .10 .78 .03

.00 .17 .11 .01 .05 .65

1.5

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.92 .00 .05 .00 .00 .00

.97 .01 .01

.05 .02 .53 .07 .04 .02 .02 .22

.14 .02 .82 .00 .00

.00 .05 .68 .1 .03 .12

.00 .03 .00 .03 .91 .01 .00

.01 .01 .00 .1 .09 .71 .07

.00 .17 .09 .01 .09 .62

.84 .00 .01 .08 .01 .03 .00 .01

.97 .02 .01

.05 .02 .48 .09 .05 .01 .02 .26

.10 .05 .80 .01 .01 .01

.04 .64 .15 .06 .1

.07 .03 .03 .16 .59 .07 .04

.02 .00 .04 .01 .13 .10 .39 .29

.01 .17 .00 .07 .02 .17 .54

.6 .01 .38 .00

.97 .02 .00

.06 .02 .59 .05 .1 .01 .00 .16

.59 .04 .36 .00

.06 .6 .06 .05 .21

.00 .01 .00 .03 .88 .02 .04

.01 .02 .09 .1 .67 .1

.17 .15 .02 .09 .56

3.0

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.47 .13 .37 .01 .00 .00 .00

.00 .99 .00

.21 .01 .17 .20 .09 .04 .06 .19

.43 .01 .1 .39 .03 .01 .02

.01 .00 .05 .04 .39 .08 .08 .33

.04 .06 .03 .03 .68 .02 .11

.01 .07 .02 .12 .11 .51 .14

.05 .00 .18 .02 .20 .08 .11 .33

.48 .02 .07 .28 .00 .09 .01 .03

.00 .97 .00 .01 .01

.16 .03 .2 .20 .08 .08 .07 .15

.42 .01 .06 .32 .01 .09 .03 .03

.01 .00 .08 .04 .37 .09 .14 .24

.25 .00 .07 .18 .04 .20 .1 .13

.08 .00 .13 .08 .14 .1 .16 .30

.04 .00 .12 .06 .2 .07 .15 .34

.56 .1 .29 .01 .03

.98 .00 .01

.22 .26 .12 .13 .03 .03 .18

.49 .00 .09 .34 .01 .00 .00 .03

.02 .01 .06 .01 .44 .05 .11 .28

.02 .02 .04 .84 .03 .04

.02 .04 .02 .12 .12 .52 .14

.07 .00 .12 .03 .25 .05 .1 .37

FIGURE 4.14: Selected confusion matrices with noisy training and test data. The
middle column shows that classification performance drops and increases with the ex-
clusion of the haar and statistical feature sets respectively.
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Figure 4.11 shows the results of a classification experiment using noisy training and test data. There

is an approximately linear decrease in F-Score as the noise-signal variance ratio (NSV) is increased.

For the best performing feature set (core - {segmentation}) the F-Scores are significantly higher than

those for using undistorted training data in Figure 4.11. This means that misclassification with regards

to noise is not solely the result of a disparity in feature values across training and test data. Either the

noise is causing information loss and making classification impossible, or our features are insufficient to

recover the original structures now hidden in noise. As discussed in the introduction to the experiment

Figure A.2 in Appendix A shows that for a NSV of 1.5 that the characteristic structures of most classes

are not easily seen, and at 3.0 it is difficult for a human to discriminate amongst the classes that do not

have large scale structures like the SNe, ESE and Novae classes. This observation along with Figure 4.14

partially supports the case for information loss as classes with locally variable and small scale structures

like the FSdMe, FSRSCVn and XRB classes are either misclassified as one another or are classified as

noise. Only the ESE, SNe and Novae classes - the classes with large scale structures - have more than

50% of their test cases classified correctly at 3.0 NSV.

Comparing the performance in the middle and left columns tells us the haar feature set is important for

identifying the classes with large scale structures such as Novae and SNe and is an important feature for

dealing with noise. Haar wavelets average large sections of the light curve to arrive at the coefficient

values, making them like a primitive noise filter.

The results for noisy training and test data put an upper bound of 0.8 F-Score on any experiment in-

volving 1.5 signal-noise variance for our feature set since classification accuracy will only be worse

when using undistorted training data, removing data and applying a power law distribution. Figure 4.11

shows the performance of the classifier using undistorted training and noisy test data, as the noise-signal

variance ratio is increased. The F-Scores of all feature sets drop rapidly for any amount of increased

noise. From 0.5 noise-signal variance there is an F-Score drop of 0.2, falling consistently up to 1.5 with

a gradual decline to 3.0 with an F-Score of about 0.3 for the core feature set.

The left and middle columns of confusion matrices in Figure 4.13 shows a very strong trend to misclas-

sify every class as noise as the NSV is increased to 1.0 and higher. Comparing these two columns to the

right column suggests that the cause of the misclassification is a smoothing of the flux histograms used

by the statistical feature to appear like the noise of BG class at NSV 0. These results differ a lot from

those seen in Figure 4.14 and illustrate that there is a great deal of shift in the feature values as noise is

introduced.
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Noise is a serious issue for the classifier both because because it blurs the distinctive structures between

classes that were already similar (XRB and FSRSCVn, FSdMe and BG) and because the Random Forest

cannot cope with the train/test disparity in the structure of the light curves under the distortion. The haar

feature set demonstrated a significant performance increase in classifying noisy classes with large-scale

distinctive structures like ESEs, Novae and SNe. The statistical feature set, despite having some robust-

ness to missing data, is highly sensitive to the introduction of noise. No other feature set in subtractive

analysis led to a significant shift in classification. As in all the other distortions experimented with in

this thesis, advance knowledge of their severity would help classification greatly. Unfortunately, the

noise-signal variance of every test case in the ASKAP scenario will be different. Exploring noise pre-

processing techniques and how well they remedy the training-testing classifier disparity is an important

direction for future work.
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4.8 Experiment 5 — Power law applied to signal, 50% data missing, 0.75

Noise to signal variance ratio

This experiment assessed the impact of a combination of distortions on classification. A moderate

amount (0.75 noise to signal variance) of noise was introduced into the signal and 50% of the data was

removed as small randomly distributed chunks. This data in this experiment is most similar to read

world astronomical data and the results are the best indicator of how these supervised classification

system would perform in the VAST pipeline.
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FIGURE 4.15: Plot of F-Score versus percentage of light curve observed with undis-
torted and cropped training data and distorted and cropped test data. The trend of
F-Score for all feature sets is from 0.4 to 0.2 from 100% to 10% observed data.
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FIGURE 4.16: Plot of F-Score versus percentage of light curve observed with equally
distorted training and test data. The trend of F-Score is from 0.8 to 0.4 from 100%
to 10% observed data for the best feature set.
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Predicted

A
ct

ua
l

Observed
data

core core - statistical

100

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

A B C D E F G H

.99 .00

.62 .33 .02 .02 .00

.27 .62 .05 .03 .01

.15 .00 .28 .56

.79 .03 .17 .01

.86 .01 .04 .00 .05 .00 .01

.40 .30 .16 .04 .00 .03 .05

.18 .00 .58 .15 .02 .02 .04

A B C D E F G H

.47 .02 .50

.02 .59 .23 .13 .02

.07 .03 .69 .13 .01 .06

.29 .00 .04 .65

.41 .00 .29 .09 .16 .03

.67 .00 .10 .15 .03 .00 .02

.29 .01 .30 .13 .03 .00 .22

.12 .00 .47 .11 .05 .00 .23

75

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.99 .00

.31 .64 .00 .01 .02 .00

.32 .56 .09 .03

.19 .15 .66

.84 .04 .05 .01 .04 .00 .01

.88 .04 .00 .05 .02

.43 .05 .24 .13 .00 .04 .09

.36 .33 .19 .00 .01 .10

.41 .05 .53

.01 .50 .21 .27

.15 .03 .58 .17 .06

.19 .01 .07 .73

.49 .28 .11 .04 .06

.59 .00 .15 .20 .03 .00 .01

.30 .01 .31 .19 .01 .02 .15

.19 .01 .39 .21 .01 .00 .18

50

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.99 .00 .00

.55 .35 .04 .01 .00 .00 .03

.43 .46 .08 .00 .01

.28 .20 .50 .01

.90 .00 .04 .01 .01 .01 .01

.93 .04 .00 .02

.60 .01 .23 .07 .00 .02 .06

.49 .30 .13 .02 .05

.41 .02 .08 .47 .00

.08 .12 .25 .53

.14 .01 .50 .30 .00 .04

.29 .00 .06 .63 .00

.59 .01 .15 .20 .04

.49 .03 .12 .24 .01 .01 .08

.48 .01 .21 .16 .02 .11

.40 .00 .27 .19 .00 .13

25

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.94 .03 .01 .00

.66 .05 .10 .08 .00 .02 .08

.54 .33 .11 .01

.33 .00 .27 .38 .01

.81 .10 .01 .01 .02 .03

.80 .09 .00 .05 .05

.60 .00 .20 .04 .00 .05 .09

.68 .00 .22 .03 .02 .03

.30 .02 .17 .50 .00

.07 .54 .09 .29

.36 .03 .37 .22 .00

.24 .03 .12 .58 .01 .00

.48 .02 .21 .27 .00 .01

.33 .02 .18 .38 .03 .04

.41 .01 .31 .15 .00 .04 .06

.42 .01 .25 .27 .00 .02 .02

10

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.20 .64 .11 .01 .00 .01 .01

.00 .98 .01 .00

.08 .63 .21 .01 .04 .01 .00

.06 .55 .23 .14 .00

.16 .64 .10 .01 .03 .03 .01

.15 .67 .08 .00 .01 .08

.09 .42 .12 .00 .18 .13 .04

.09 .69 .12 .01 .03 .03 .01

.09 .80 .05 .04 .01

.00 .99

.07 .82 .06 .03 .01 .00

.11 .80 .02 .06 .00

.07 .77 .09 .03 .00 .01 .01

.07 .70 .09 .01 .07 .05

.08 .71 .08 .01 .05 .05 .01

.05 .82 .05 .03 .00 .01 .02

FIGURE 4.17: Selected confusion matrices for all distortions experiment with undis-
torted training and distorted test data. The two columns show how the exclusion of
the statistical feature set improves classification performance.
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Predicted

A
ct

ua
l

Observed
data

core core - haar core - statistical

100

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

A B C D E F G H

.95 .00 .00 .02 .01

.99 .00

.05 .61 .07 .03 .00 .01 .20

.02 .03 .89 .00 .00 .03

.06 .01 .02 .01 .67 .12 .05 .03

.00 .05 .92 .01 .00

.02 .03 .02 .09 .14 .59 .09

.02 .2 .04 .05 .01 .08 .58

A B C D E F G H

.95 .01 .00 .01 .01 .00

.00 .98 .00 .00 .00

.01 .01 .66 .04 .03 .00 .01 .21

.03 .03 .9 .01 .02

.06 .01 .02 .01 .59 .19 .05 .06

.03 .00 .01 .00 .10 .78 .04 .02

.01 .05 .06 .12 .18 .25 .31

.02 .17 .05 .04 .00 .13 .57

A B C D E F G H

.72 .02 .22 .02 .00 .01

.99 .00 .00

.04 .01 .60 .06 .06 .00 .01 .19

.45 .02 .03 .48 .00 .01 .00

.02 .03 .00 .63 .08 .04 .17

.00 .04 .88 .01 .05

.01 .02 .02 .06 .11 .7 .06

.03 .18 .00 .14 .03 .09 .51

75

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.9 .01 .02 .01 .03 .01 .00 .01

.98 .01 .00 .00

.07 .58 .1 .02 .00 .01 .21

.03 .03 .90 .00 .02

.07 .06 .60 .14 .07 .05

.05 .01 .01 .08 .8 .02 .02

.03 .03 .01 .11 .12 .58 .11

.09 .00 .18 .05 .06 .01 .09 .50

.84 .02 .02 .01 .05 .02 .01 .02

.98 .01 .01

.03 .01 .58 .10 .03 .01 .02 .21

.01 .05 .88 .01 .04

.09 .00 .02 .01 .46 .25 .08 .08

.14 .04 .00 .19 .55 .04 .02

.03 .01 .03 .05 .17 .17 .24 .29

.10 .00 .15 .06 .05 .03 .12 .46

.58 .04 .32 .01 .00 .00 .03

.99 .00

.05 .04 .58 .06 .03 .01 .02 .19

.45 .01 .04 .44 .01 .01 .00 .02

.04 .00 .06 .01 .54 .10 .05 .17

.02 .00 .01 .04 .87 .02 .03

.02 .04 .02 .04 .12 .66 .07

.08 .17 .02 .15 .05 .11 .4

50

BG A

ESE B

FSRSCVn C

FSdMe D

IDV E

Novae F

SNe G

XRB H

.72 .01 .05 .04 .08 .02 .00 .05

.01 .98 .00

.08 .44 .21 .05 .04 .00 .16

.03 .00 .08 .8 .01 .00 .00 .05

.16 .01 .03 .00 .43 .14 .11 .09

.12 .03 .01 .05 .69 .03 .05

.05 .00 .03 .04 .08 .12 .54 .11

.12 .01 .11 .08 .11 .08 .09 .37

.6 .02 .03 .02 .06 .17 .04 .05

.02 .95 .00 .00 .00 .00

.07 .55 .12 .01 .08 .02 .13

.03 .08 .83 .00 .01 .00 .03

.11 .00 .05 .37 .21 .12 .11

.31 .01 .07 .19 .27 .06 .08

.05 .01 .06 .04 .18 .11 .28 .25

.13 .15 .11 .10 .07 .09 .32

.49 .05 .32 .04 .02 .00 .05

.01 .97 .00 .00 .00

.13 .02 .44 .09 .07 .03 .04 .16

.42 .00 .06 .42 .00 .01 .01 .06
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FIGURE 4.18: Selected confusion matrices for the all distortions experiment with
undistorted training and distorted test data. The middle column shows that haar
wavelets give slightly better classification performance on the Novae and SNe classes.
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Figures 4.15 and 4.16 show the plots of F-Score versus percentage of test case observed with undistorted

training and distorted test data (asymmetric), and equally distorted training and test data (symmetric) re-

spectively. Comparing the two plots gives an indicator of the extent to which the shifting of feature

values is responsible for misclassification. We should expect that since this experiment involves a com-

bination of noise and missing data, two distortions that the asymmetric training/test classifier was very

sensitive too, then the classifier should have the same difficulty in this experiment. This is verified by

the differences in the F-Score for the combined feature set, 0.4 lower with asymmetric training and test

sets. This difference is consistent and large for all amounts of observed data.

The haar and statistical feature sets are critical for classification with the symmetric training/test sets.

Removing the haar feature set causes F-Score to fall 0.1 for all values of observed data except 10. The

left and middle columns of confusion matrices in Figure 4.18 show in the 3rd 4th and 5th rows that Haar

wavelets are critical amongst our features for identifying Novae and SNe - light curves with large scale

structures in the time domain. The left and right columns affirm the observations in the no distortions

experiment that statistical features are necessary for correctly classifying the FSdMe class.

The confusion matrices in 4.17 again resemble the confusion matrices of their combined distortion

results for noise and missing data in Figures 4.9 and 4.13. Misclassifications to the BG class are most

frequent with the core feature set, and to the first four columns with the statistical feature set subtracted.

The classifier shows that correct identification at a 50% rate of FSdMe and ESE classes is still possible.

There are far too many false positives and misclassifications for this classifier to be useful in the VAST

pipeline however.

4.9 Conclusion

These explored the impact that distortions have on classification, both in terms of information loss and

the inadequacy of our features to separate distorted light curves, and also how the shift of feature values

under distortions causes misclassification when using undistorted training data.

The first experiment demonstrated that our classifier can effectively separate the light curves when no

distortions are applied. The F-Score of 0.97 in that experiment means the structures of the light curves

themselves do not lead to misclassification. The experiment did indicate a vulnerability of the classifier

in that it relied on the statistical feature set to accurately classify the FSdMe class. Distortions impacting
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the statistical feature, such as the introduction of noise will mean the FSdMe class can no longer be

discriminated accurately.

The second experiment, introducing gaps into the light curve, showed that the feature set can effectively

separate light curves with even large amounts of missing data, but only when the training set is equally

distorted. F-Score did not fall below 0.9 for the best feature set until 90% missing data. The results

show that the feature values shift a lot under distortions, in particular, the spectral feature set, reducing

F-Score by 0.1 for 25-75% missing data. The statistical set showed the greatest invariance to missing

data. Missing data is a serious issue for the classifier.

The third experiment involved limiting the amount of the light curve observed in both the training and

test sets and attempting classification. The F-Score did not fall below 0.9 for all percentages of the light

curve observed except for 10%. Since there may be subtle features that allow early classification this

experiment does not say much for early classification in realistic data conditions. At least however there

is an upper bound of at most 0.9 on classifying our light curves if we have observed at least 10% of the

signal.

The introduction of noise into the light curves in the fourth experiment showed that our features cannot

very accurately classify noisy light curves. For a noise to signal variance of 1.5 with equally distorted

training and test sets the best feature set achieves an F-Score of 0.8. The haar feature set performed

best when large amounts of noise were present, improving classification primarily for the Novae and

SNe classes and are marginally more important than the statistical feature set. The kind of noise seen

at 1.5 noise to signal variance is typical of astronomical data (see Figure A.2 for sample light curves).

Classification performance is worse still when using clean training data. The noise in the light curves

leads most classes to be classified as background noise.

Finally, the combined distortions in experiment 5 show that both the information loss seen with the

introduction of noise and with equally distorted train and test data is compounded with 50% missing

data and a power law distribution. The F-Score is 0.2 lower than the results of the noise experiment

for all amounts of observed data but 10%. This means that an F-Score greater than 0.8 is not possible

using undistorted training data even with the full light curve available. For that experiment, classification

performance at 100% observed data is 0.4 F-Score. This decreases to 0.2 F-Score at 10% observed data.

Similar patterns of misclassification for the noise and missing data experiments are seen.
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F-Scores of 0.4 are unsuitable for use in the VAST classification pipeline. Potential improvements to

the classifier involve preprocessing techniques to recover the structure of the original signal from a

distortion, and also to make the test data look more like the training data. This will reduce both the

shift of feature values which is the main cause of misclassification, and may improve the classification

baselines with distorted training and test data. Examples of directions to pursue are noise filters and

smoothing, and regression techniques (simple linear interpolation or more complex statistical models

like Gaussian processes) for filling in missing data. Finally, making assumptions about the nature of

the distortions that will be present in the test data and using already distorted training data, although

paradoxical, could improve classification performance.



CHAPTER 5

Shapelet representations of time series

5.1 Overview

A shapelet is a distinctive subsequence of a class of time series objects within a dataset. They are in-

teresting to transient classification because they explicitly encode discriminative substructures of the

transient events. This in contrast to the features used in the experiments of Chapter 4 which either

summarised large sections of the light curve (haar), converted the light curve to an entirely different

representation (spectral) or summarised distributions across the light curve (statistical and segmenta-

tion). Shapelets are used to produce features by giving to a classifier the subsequence distance of the

shapelet to a test case. Distances will be close to 0 if the shapelet appears in the test case, and substan-

tially greater than 0 otherwise.

Since no other feature explicitly contains the substructures of the transient classes it was hoped that

shapelets would improve classification performance with the missing and noise distortions. This was

expected for the experiments using equally distorted test data because the shapelets might recognise a

transient structure better or in a complementary fashion to the other features. Additionally, it was ex-

pected that performance would improve when using undistorted training data and distorted data. This

is because the distance of a shapelet to a matching section of a test case would change much less than

the values features generally involving the entire light curve. Finally the values of the shapelet features

were expected to be much more consistent for light curves have substructures repeating at unpredictable

intervals (XRBs, FSRSCVns, FSdMEs) than the features of Chapter 4

The shapelet extraction algorithm was implemented as outlined in Section 5.2 and the best single

shapelet for each class was extracted forming the shapelet feature set. An clustering algorithm to

discover a number of useful shapelets, not just the absolute best, was implemented (referred to as

62
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20shapelets). This feature gave marginal performance increases of between 0 and 0.1 F-Score over

the shapelet feature set for all distortions. Unfortunately due to inherent complications with the shapelet

algorithm the classification accuracy did not improve above the core feature set in most cases. These

complications included the inadequacy of binary entropy to separate the XRB and SNe classes, false

positives when matching shapelets to gappy data and the use of undistorted data for shapelet extraction

resulting in shapelets which are then not robust to the introduction of noise into the light curve. There

were some exceptions to this, with a marginal (0.05) increase in F-Score at 10% observed data with

undistorted light curves, and a paradoxical result of a greater than 0.1 F-Score improvement in classifi-

cation accuracy when combining the core feature set from Chapter 4 at 50% and 75% missing data. A

final note on the shapelet algorithm not evaluated by experiment but important in the context the applica-

tion of this thesis to the VAST pipeline is that the shapelets can still classify light curves with unknown

start and end points. All the features in Chapter 4 will likely not work when they are trained on full light

curves and used to classify partial ones. Shapelet classification performance should not be affected so

long as the Shapelet still appears in the test case. Provided a number of shapelets are used this is fairly

likely.

5.2 Shapelet extraction and experiments

The shapelet extaction algorithm used in these experiments is the same as that given by Ye in Ye and

Keogh (2009). The algorithm is a brute force assessment of the discriminative power of every subse-

quence of every time series in the dataset. Discriminative power for each subsequence is assessed by

computing a distance measure called the subsequence distance (Equation 5.1 to every light curve in the

collection:

S(x, y) =

√
min

i=1...Ly−Lx

∑
p=1...Lx

(xi − yj+i)2

|x|
(5.1)

S(x, y) is the subsequence distance of time series x and y, Lx and Ly their respective lengths, and x is

the shortest (or equal shortest) of the two sequences. This equation represents the minimum Euclidean

distance computed over all alignments of the two sequences. When applied to missing data in this

experiment the subsequence distance will be forced to match at least 5 datapoints. If this constraint were

not introduced then the subsequence distance would match the shapelet onto gaps in the light curve,

frequently returning 0 distance. The light curves are then ordered on a separation line (Figure 5.1)

according to their closeness to 0 distance from the subsequence. A shapelet is said to be discriminative
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FIGURE 5.1: Separation line of classes in a single shapelet evaluation step of the brute
force shapelet extraction algorithm. The better the separation of classes for some split-
ting point on the separation line, the more discriminative the shapelet. The separation
here is nearly perfect with 1 test class out of place.

if there is a way to partition the separation line such that there is a clear separation of the classes in

the dataset across the partition. This goodness of separation is quantified by the binary entropy in

Equation 5.2:

E(D) = −na
N
log(

na
N

)− nb
N
log(

nb
N

) (5.2)

D is a side of a partition of the separation line. na and nb are the number of time series labelled as

class a and class b respectively and N is the total number of time series in the split. An entropy of 0

indicates perfect separation. To determine if there exists a good partition of the separation, the value

E(Dl) +E(Dr) is computed for all possible partitions of the separation line into left and right sides Dl

andDr. The minimum of these values becomes the final indicator of discriminative quality for a shapelet

The most discriminative shapelet for any member of a particular class output from the procedure given

above becomes a shapelet feature for that class. The distances of the shapelet under subsequence dis-

tance to a light curve are used as features in both training and testing in a supervised classifier.

It is likely that there are many distinct subsequences of our light curves that are useful in discrimi-

nating them from the other classes. A simple extension to the shapelet algorithm that can identify these

different but still useful subsequences is to cluster the shapelets according to their subsequence distance

from one another. The shapelets do not necessarily have to extracted and evaluated on the same dataset.

An additional extension to the shapelet algorithm, unfortunately not included in these experiments due

to time constraints, is to extract shapelets from undistorted time series and then to evaluate their discrim-

inative power (as above) on the same time series but with noise added or with data missing. This would

make the extraction algorithm select shapelets that still have as much information as possible about the

original discriminative structure but are also robust to distortions.

A limitation of the binary entropy approach to shapelet extraction is that shapelets will be chosen if

they separate only the class they belong to from the other classes. If two classes share a distinctive struc-

ture then that will never be chosen as a shapelet. Another extension of the shapelet algorithm to allow
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the extraction of shared discriminative subsequences is with multi—class entropy, proposed by Mueen

in Mueen et al. (2011).

E(D) = −
C∑
i=1

ni
N
log(

ni
N

) (5.3)

Where ni is the number of time series with class label i out of C labels appearing in the dataset, and N

is the total number of time series. Again, an exploration of multi-class entropy based shapelet extraction

was out of the time scope of this thesis and is left for future work.

The brute force extraction algorithm does include performance some performance improvements in-

volving early abandon of distance computations but still has a scalability of O(N2m2) where m is the

average length of a shapelet and N is the number of time series in the dataset. Fortunately shapelet ex-

traction needs to be performed only once and then these shapelets can be applied any number of times.

Computing the minimum distance to a test time series takes only O(m2) and in practice m is small.

Shapelets are suitable in terms of scalability for the VAST classification framework.

5.3 Preliminary - Shapelet extraction results

The set of shapelets giving the best information gain for their source class is shown in Figure 5.2. Each

shapelet is shown in the context of the time series it was extracted from.

The extracted shapelets are puzzling because the most obviously distinctive structures of the light curves

such as the sharp spikes of the XRB or the decay of the SNe are not chosen. For several classes very

short shapelets are selected and in the case of the SNe a sequence that looks like background noise is

chosen.

To investigate the odd results I produced a plot of the separation lines (Figure 5.1) of one crossfold

of shapelets to the dataset they were extracted from. The results are in Figures 5.4 and 5.5.

The mass for the dataset elements whose class matches the shapelet’s class are shown in green, for

other classes, red. The algorithm’s purpose is to choose precisely the subsequences that produce the best

possible separation of the green mass from the red masses. Note also that a good separation here leads

directly to good classification performance since these plots represent the values of the features and a

supervised classifier will give good classification performance when the feature values are distinct for
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each class.

The figures demonstrate that the shapelet algorithm has found discriminative shapelets for all but the

SNe and XRB classes. The ESE, FSdMe and FSRSCVn classes all have very clear separations. The

BG and IDV classes are close but still clear. The Novae, SNe and XRB classes all have some degree of

overlap. This is surprising since the SNe and XRB classes in particular have very distinctive structures.

It is critical to my investigation that this poor separation is explained.

I selected regions of the SNe that intuition suggests should have been better utilised by the shapelet

extraction algorithm. From these regions I drew shapelets that had the highest information gain and

plotted their separation lines on the shapelet evaluation set. The results as well as figures of the struc-

tures I chose are in Figure 5.3 and show that there is too much similarity between the most intuitive

shapelet choices for the SNe and XRB classes for the binary entropy based extraction algorithm to

select them. This demonstrates a limitation of binary entropy — when two classes have very similar

discriminative shapelets they will never be chosen. The shapelets could not classify either class, but

could allow a classifier to separate them effectively from the rest of the dataset. This could improve

classification performance if added to a featureset that could clearly separate the SNe and XRB classes

alone, but not from the entire dataset. These results also explain the difficulty in extracting shapelets for

the XRB class.
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(a) ESE shapelet
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(b) SNe shapelet
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(c) IDV shapelet
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(d) XRB shapelet
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(e) BG shapelet
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(f) Novae shapelet
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(g) FSdMe shapelet
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(h) FSRSCVn shapelet

FIGURE 5.2: Single best shapelets per class extracted by the shapelet algorithm in their
extraction context. The shapelet is highlighted in red.
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(b) Decay shapelet splitline
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(d) Peak shapelet splitline

FIGURE 5.3: Figure illustrating why the shapelet algorithm fails to choose more vari-
able structures for both the SNe and XRB classes. The figures on the left show the best
shapelets in terms of separation for the peak and decay regions of the SNe class. Even
the best shapelets extracted from these regions have large collisions with the XRB, IDV
and Novae classes as shown in the right column. The green masses overlap in both cases
with the XRB, Novae and IDV classes.
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FIGURE 5.4: First set of separation lines for the sample and evaluation shapelet sets.
The labels on the y-axis of each plot indicate the distribution of subsequence distances
for the shapelet extracted from the class indicated in the left column. The left column
of figures shows the separation lines on the dataset they were extracted from. The right
column shows the separation lines on the full dataset, a superset of the extraction set.
The shapelet algorithm has worked effectively if the mass of distances for the light
curves for the class matching a shapelet is distinct from the other masses in a figure
along the x-axis. The masses are much distinct in the left column than in the right
column indicating that the shapelet algorithm is working but is not generalising that
well.
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FIGURE 5.5: Second set of separation lines for the sample and evaluation shapelet sets.
The labels on the y-axis of each plot indicate the distribution of subsequence distances
for the shapelet extracted from the class indicated in the left column. The left column
of figures shows the separation lines on the dataset they were extracted from. The right
column shows the separation lines on the full dataset, a superset of the extraction set.
The shapelet algorithm has worked effectively if the mass of distances for the light
curves for the class matching a shapelet is distinct from the other masses in a figure
along the x-axis. The masses are much distinct in the left column than in the right
column indicating that the shapelet algorithm is working but is not generalising that
well.
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5.4 Experiment 1 - Undistorted data
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FIGURE 5.6: Confusion matrices showing classification of classes with undistorted
training and test data. The matrices show significant misclassification rates (greater
than 50%) for the XRB, SNe and Novae classes with the shapelet feature set. The
20shapelets feature set gives marginal improvements in correct classification for all
classes except BG which remains the same.

Feature set F-Score std(F-Score)

core 0.97 0.010

shapelet 0.56 0.17

20shapelets 0.63 0.093

TABLE 5.1: F-Score and F-Score standard deviation for classifying with shapelets and
undistorted training and test data.

The performance of both sets of shapelets on the undistorted set of lightcurves is shown in the confusion

matrix set in Figure 5.6 and Table 5.1 with an F-Score of for the shapelet feature set and 0.63 for the

20shapelets feature set. We saw in the previous section that there are issues with the shapelet extraction

algorithm that are contributing to classification errors. The poor separation for the XRB and SNe classes

should not amount to an F-Score of 0.58 however, and further investigation is needed. The most likely

explanation for the poor performance is that the shapelet extraction algorithm, trained on a subset of the

training data, fails to choose general enough shapelets to accommodate slight variations in the testing

data - a kind of overfitting. The extent to which this explains the classification performance can be

demonstrated by comparing the separation lines for the shapelet evaluation and the undistorted test sets.

If the separation becomes worse as we move from evaluation to testing, then the above statement is

verified as a source of misclassification.
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Figure 5.4 shows the separation lines for a single crossfold of the shapelet evaluation and undistorted

test sets to the shapelet feature set. Again, the mass of test cases with the same class as the shapelet in

question is coloured green. If the green mass is clearly separated from the red masses belonging to the

other classes, then this will lead directly to good classification performance for that class. If some green

mass is not separated from the other classes, then classification will be poor.

The separation lines show for most classes an increased overlap from the mass distributions seen on the

evaluation set. The clear separations for the two flare star and ESE classes are no longer present, replaced

by a smooth overlap with the next nearest class from the evaluation separation line. To demonstrate how

clearly these overlaps correspond to diminished classification performance, not how conflicting classes

are linked directly to off—diagonal entries on the confusion matrices in Figure 5.6. Key examples are

XRB and SNe co-confusion, BG and FSdMe co—confusion, and SNe and XRB misclassification to

many classes.

The conclusion to draw from the increase in overlap is that the original shapelets chosen from the limited

evaluation set do not generalise well. To improve generalisation the size of the evaluation set could be

increased at a large but one-off computational cost. Additionally it might be worth exploring other ways

to decide on the ‘best’ shapelet besides the absolute highest information gain. It is possible that the

split line approach selects a shapelet because its grouping has a very minor improvement in entropy over

another shapelet whose overall separation from the other classes is much more distinct.

As with all the experiments in this chapter the 20shapelets feature set showed a marginal performance

improvement over single shapelets. The confusion matrices in Figure ?? showed an increase in clas-

sification rates for every class of between 0% and 10%. This indicates that the clustering algorithm is

effective at finding additional useful shapelets.
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5.5 Experiment 2 - Introducing gaps into the light curve
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FIGURE 5.7: Plot of F-Score versus amount of missing data in signal. The core +
shapelet feature set gives the best performance. The 20shapelet feature set reduces
classification performance. Both shapelet feature sets have F-Scores lower than 0.2 for
25% missing data and above.

There are some interesting observations to make on the results in this experiment. Figure 5.5 shows that

the F-Score for classification with both the shapelet and 20 shapelet drops to about 0.15 as soon as any

amount of data is removed from the signal stays below 0.2 for any amount of missing data. An F-Score

of around 0.125 essentially means random choice by the classifier in an 8-class classification problem.

These results clearly indicate that the application of the shapelet features has failed in some way.

Paradoxically, the introduction of the shapelet feature set into the classifier boosts F-Score by a the

shapelet feature set, boosting F-score by close to 0.1 at 50% missing, and close to 0.15 at 75% missing.

This performance is in contrast to the 20 shapelet set which reduces classifier performance as we would

expect.
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The first result, that both shapelet sets perform very poorly on missing data, has two likely contributing

factors:

(1) For sufficient amounts of missing data the distinct features the shapelets use for classification

are not still present

(2) The missing data allows the distance measure to ignore critical parts of shapelets in determining

a match.

The first explanation certainly must become true at a point. If we had only 5 data points sampled from

a different part of the light curve than our shapelets were extracted from then classification using that

shapelet is not possible. However, for smaller amounts of missing data the most critical structures are

still evident as can be seen in sectionr̃efexpframework, experimental framework chapter, and in appen-

dix A.3, showing samples from the dataset for each parameter in this experiment. The results for the

25% missing data experiment are more likely to be explained by the second complication.

The distance measure used so far for producing features from shapelets, subsequence distance, is in-

tended for use on fully sampled time series and did not immediately extend to the transient classification

problem. As outlined in the introduction to this chapter, it was modified so a shapelet must fit at least

5 data points to prevent the algorithm matching a shapelet onto an empty region of data. These results

suggest that this modification is not sufficient to make shapelets functional for any amount of missing

data

Although a shapelet must contain a structure distinctive to the class from which it was extracted, it may

have subsequences that are not. An illustrative example is the noise situated in the shapelet extracted for

the FSdMe class (Figure 5.2), consisting of three peaks and then flat noise. If the peaks are omitted in the

distance measure computation then the underlying flat noise could fit any other light curve in our dataset

with a near 0 distance. This could well explain the solid mass in the FSdMe column in the confusion

matrices in Figure 5.8

To verify that these false positives are the cause of the poor performance I did a manual investigation

of the minimum distances found for a few shapelets to the light curves for one crossfold of the 25%

missing data test set. The results are shown in Figure 5.10. As a rough way of quantifying exactly how

much of the critical part of these signals goes unmatched, I include for each shapelet the fraction of the

total deviation from the mean of the shapelet datapoints that go unmatched (visualized in Figure 5.10).
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For contiguous time series this measure will always be 1. If no point was matched at all, the minimum

distance would always be zero, and this measure would be 0. If half the deviation of the shapelet is

matched, it would be 0.5. The greater this fraction then the more likely that the match indicates a false

positive for the shapelet feature.

The matches in the figure show exactly why the classifier is so confused. Whenever there is a small gap

in the time series the minimum distance measure chooses that region to perform a match and getting the

same value for almost every piece of test data. There is no meaning as a feature for the distance of a

shapelet to a test case.

To fix this problem I produced a modified distance measure that discards all matches not meeting a

deviation fraction threshold. The problem with this approach is that there is no certain way to decide on

a sensible value of the threshold. It should probably be closer to 1, say 0.9, since as we see in the figure

above matchings can still be very poor even with 70% of the variance matched. If the value is 1 then the

minimum distance would ignore matches with even a single unmatched point. What value would work

best in practice would have to be determined by experiment and might vary depending on the kinds of

data being classified. Figure 5.11 shows the minimum distance matches for the same time series with

the threshold modification.

The actual choice of match for the IDV time series is only shifted slightly, still utilising that gap to

omit the small fraction of the variance it is still allowed to (only 10% of total variance). However,

the spread between the distances is at least now distinct (0.08 for the IDV and 0.04 for the FSdMe).

This distinctness will at least allow the possibility of correct classification. Missing data in time series

is a serious issue then for the shapelet classification approach. A modified distance has demonstrated

potential to improve the situation but no time was available to run further experiments. These then are

left for future work.
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FIGURE 5.8: Confusion matrices for the missing data experiment. The confusion ma-
trices show a very strong tend for all classes to be misclassified as FSRSCVn and IDV
for all amounts of missing data
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FIGURE 5.9: Confusion matrices for the missing data experiment. The confusion ma-
trices show paradoxically that classification performance on missing data is improved
with the addition of the shapelet set. In particular for the XRB, SNe, Novae and IDV
classes
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(a) Match of FSdMe shapelet to gappy IDV time series
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(b) Match of FSdMe shapelet to gappy FSdMe time series

FIGURE 5.10: False positives for the 25% missing data experiment for the IDV and
FSdMe classes to an FSdMe shapelet. d means the value of the minimum distance,
deviation is the total fraction of deviation matched
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(a) Match of FSdMe shapelet to gappy IDV time series
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FIGURE 5.11: Results of modifying the distance measure to use a deviation matched
threshold. The distances are equal with no threshold, and are somewhat distinct other-
wise, although not as clearly separated as on undistorted data.
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5.6 Experiment 3 - Limiting the amount of the light curve observed

This experiment involves limiting the percentage of light curve observed and observing how classifi-

cation performance in terms of F-Score changes as the visible part of the light curve is reduced. The

features used are the single shapelet feature sets, both alone and combined with the core feature set.

102030405060708090100
Observed data

0.0

0.2

0.4

0.6

0.8

1.0

F-
S
co

re

20shapelets

core + 20shapelets

core

core + shapelet

shapelet

FIGURE 5.12: Plot of F-Score versus percentage of light curve observed. There is a
marginal increase in classification perofrmance at 10% observed data for the core +
shapelet feature set.
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FIGURE 5.13: Confusion matrices for the observed data experiment. The confusion
matrices show that at 10% observed data that classification is improved by superior
discrimination of the SNe and XRB classes from the BG class.
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The F-Scores in Figure 5.12 show that classification performance for the two shapelet feature sets de-

creases gradually as the percentage of the light curve observed is decreased. At 10% observed data

there is a marginal improvement in F-Score when using the combined core + shapelet feature set of 0.07

F-Score. Referring to the confusion matrix in Figure 5.13 we see that this is the result of the shapelets

allowing a more accurate identification of the background noise class. The difference of F-Score is too

marginal to suggest that the shapelet algorithm is useful for early classification.
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5.7 Experiment 4 - Introducing noise into the light curve

The aim of this experiment was to assess the impact of noise on the shapelet classification algorithm.
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FIGURE 5.14: Plot of F-Score versus amount of noise introduced into the signal. The
shapelet sets perform poorly for any amount of noise and also decrease classification
performance when combined with the core feature set.

Classification becomes poor very quickly on all shapelet sets. At a 1.5 noise to signal variance ratio

the shapelet feature set produces near random classification. With very strong signals (at 0.5 and 1.0

noise to signal), classification is at 0.3 and 0.2 respectively. Classification accuracy for the Nova and

IDV drops to 0 for a 0.5 signal to noise ratio and below 0.2 for both the XRB and SNe. The most

likely explanation for this is that the short shapelets chosen by the shapelet extraction algorithm can fit

essentially anywhere on noisy data. A suggestion for improving the shapelet classification algorithm on

noisy data is to use a separate evaluation and sample set for the shapelets. If slightly noisy data were

used to evaluate the clean, undistorted data, then short shapelets would never be chosen unless they had

very clear structures that stood out from noise.
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So introducing noise is yet another difficulty for the shapelet algorithm and the transient classification

problem, so much so that the number of shapelets used corresponds with a large decrease in classification

performance when combined with the core feature set. If it is actually possible to use shapelets to classify

transients when they have some or a lot of noise in their signal will be demonstrated by modifying the

evaluation set and is left for future work.
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5.8 Conclusion

This chapter explored the shapelet feature representation algorithm for time series and its ability to

improve classification performance on distorted transients. The preliminary results when classifying

undistorted data showed that the shapelets can classify the light curves with an F-Score of 0.58, and

when using clustering an F-Score of 0.63. The clustering algorithm provided marginal performance

improvements in all situations. These results meant that the shapelet features might be useful for im-

proving classification performance when combined with the core feature set used in 4. However, as soon

as distortions were introduced the shapelet algorithm gave very poor F-Scores, lower than 0.3 for any

amount of noise or missing data. The cause of the problems with missing data was identified as false

positives due to the way that subsequence distance matched missing data and a modification that forces

subsequence distance was proposed. Noise was an issue for shapelets because they were originally ex-

tracted and evaluated on undistorted data. As soon as noise was introduced the short shapelets chosen

from the clean data no longer had discriminative properties. I proposed using noisy data to evaluate the

discriminative power of the shapelets during extraction to prevent the algorithm from choosing short

shapelets.



CHAPTER 6

Conclusion

The next generation of radio telescopes such as the ASKAP telescope array will produce large volumes

of data in the form of time series that represent the behaviour of stellar objects. Identifying which

of these time series contain transient behaviour — a rapid change over time — is of great interest to

scientists because these typically indicate the unfolding of extreme processes out in space. The challenge

is identifying these transient phenomena and classifying them as early as possible to allow astronomers

around the world to investigate them with other instruments.

In this thesis I contribute to solving the transient classification problem by proposing, implementing

and evaluating a feature based supervised classifier for astronomical transients. The evaluation involved

characterising how the various distortions present in astronomical data impact on classification accuracy

and proposing improvements to the approach. There are many components involved in this contribution

that are in themselves significant:

(1) I give a thorough review of existing time series literature, identifying feature representation as

a good candidate for effective classification of transients.

(2) I propose an experimental framework to evaluate classifiers by stating transient classification

as a multi-class classification problem with simulated transients.

(3) I propose and implementing consistent ways of simulating the distortions present in astronom-

ical data that can be re-used by collaborators doing similar research.

(4) Using the experimental framework I evaluate Random Forest supervised classifier, implement-

ing wavelet transforms and statistical properties of the light curves as features.

(5) I use the results of the feature based classification evaluation to characterise the effect of dis-

tortions on classification.

85
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(6) As an extension to the core features I give a preliminary investigation into the Shapelet time

series feature representation, identifying the limitations of the approach and proposing im-

provements.

I tie the analysis of these experiments back to the VAST classification pipeline and conclude the feature

based classified is a viable option. I suggest directions for future work as introducing the preprocessing

of distorted test data before feature extraction and improving the application of the Shapelet feature

representation to distorted light curves.

In the introduction I introduced astronomical data as time series which are sequences of time indexed

data points. I defined a transient as a temporary, possibly repeating phenomena appearing in a time

series that can be identified by its characteristic shape or spectral properties. I also give definitions of the

distortions present in astronomical data that can make an underlying transient signal difficult to classify.

The distortions included noise in the signal due to interference of the light with the interstellar medium,

missing datapoints as the result of a particular sampling routine or shared telescope responsibilities, and

scaling of the intensity of the transient light curve according to a power law distribution to simulate the

distribution of the sources of transient signals in space. I also identify some of the complications of tran-

sient classification in the context of the VAST project, including the requirement that any classification

algorithm be highly scalable and identify transients as early as possible. Each of the distortions along

with early classification is directly assessed by the classification experiment in Chapter 4.

My literature review gives a thorough exploration and evaluation of existing time series classification

literature across multiple application domains. It identifies supervised classification and feature extrac-

tion including Haar wavelets, Lomb-Scargle periodograms, and statistical properties of the flux and

gradient distributions as a good choice for classifying transients in time series. The literature review

also explored and compared a variety of other classification approaches including distance measures

like Dynamic Time Warping, Temporal Grammars, Gaussian Processes and Shapelets as classification

approaches. The review shows that distance measures are probably not effective for coping with dis-

tortions but having a background understanding of them is useful for understanding other classification

approaches such as the subsequence distance measure used in the Shapelet feature representation algo-

rithm. I give an introduction to the application of motif-finding algorithms and the Shapelet extraction

algorithm for time series and illustrates that it is a promising method to make a feature based classifier

robust to unknown start and end points of a transient event. Additionally I discuss Temporal Grammars,

an interesting classification approach because they are naturally invariant to amplitude scaling, but I
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conclude that z-normalisation to approximately remove amplitude scaling then the application of other

approaches such as statistical models is likely to be more accurate. Finally I review Gaussian Processes,

a classification approach with a natural robustness to both noise and missing data, and conclude that they

are unsuitable for the problem due to their high time complexity and lack of flexibility in classifying time

series without defined start and end points.

In Chapter 3, I implement an experimental evaluation scheme of astronomical transient classification

to assess the impact of distortions on classification. It involves limiting the scope of the problem to an

multi-class classification problem with 8 simulated transient classes: 7 kinds of astronomical phenomena

with periodic, repeated and large-scale characteristic structures, and one class representing background

noise. The simulated transient models were provided by Kitty Lo (VAST Memo in prep) represent-

ing real world transients including Extreme Scattering Events (ESEs), Intra-Day variables (IDVs), Two

kinds of flare stars (FSdMe and FSRSCVn), X-ray binaries (XRBs) and Supernovae and Novae (SNe,

Novae). The background noise (BG) class was simulated using Gaussian noise. The process of introduc-

ing the distortions for early classification (cropping), noise, missing data and a power law distribution

was outlined and I implemented software to apply the distortions to the raw light curves. The framework

made the assumption that the start point of a transient event was known and uses a sliding window of

500 datapoints for each light curve. The framework used 200 of each transient class giving a total dataset

of 1600 light curves for reliable classification results. For evaluation it proposed 10-fold cross valida-

tion on the dataset with F-Score as a measure of classification performance and the standard deviation

of F-Scores used to evaluate the reliability and significance of a classification result. This framework

represents a significant contribution to exploring the astronomical transient classification problem since

any classifier can be inserted into the framework and evaluated.

In Chapter 4 I apply a Random Forest supervised classifier to the experimental framework and implement

the features identified in the literature review as likely to be effective in classification. These features

included the frequencies corresponding to the strongest peaks of a Lomb-Scargle periodogram, The

coefficients of a Haar wavelet transform, statistical properties of the flux distribution such as its kurtosis,

skew, and distributions of flux relative to the mean and standard deviation, and those same statistical

properties extracted from a gradient distribution produced by a linear segmentation. The key results

obtained from the experiments are as follows:

• The classifier performs well on undistorted data with an F-Score of 0.97 indicating very high

precision and recall. Separating the transient structures is not a problem for the classifier.
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• Neither is the early classification of undistorted light curves, with an F-Score above 0.9 for up

to and including 20% of the signal being observed, and 0.8 at 10%.

• When using training and test sets with equal amounts of data missing the classifier also per-

forms well, staying above 0.9 F-Score up to 75% missing data. At 90% missing data the

F-Score falls to 0.8. This means that our features can cope with classifying transient light

curves with large amounts of missing data

• When using undistorted training data and distorted test data the differences in feature values

seriously affects classification performance. The spectral feature set is the most sensitive and

removing it in the subtractive analysis increased F-Score by 0.2 at 50% and 75% missing data.

The statistical feature set was the most robust, and its removal caused F-Score to drop by 0.1

F-Score for 25% to 75% missing data

• In dealing with noise F-Score falls linearly as classification performance is increased. For small

amounts of noise the statistical feature set is most important, improving F-Score by 0.1 up to

1.5 noise to signal variance. From and after that amount of noise however, the haar wavelet

feature set is most important, also improving F-Score by 0.1 on the combined feature set. The

experiment demonstrated that the Haar wavelet features are best at identifying the SNe and

Novae classes

• When using undistorted training data classification performance falls to 0.57 F-Score at 1.0 for

the best performing feature set, and 0.5 at 1.5. Those results clearly show that the statistical

features, most robust to missing data, are the most sensitive to noise in terms of the shift

in feature values. The confusion matrices demonstrate that these results arise largely from

misclassification of all classes as the background noise class.

• The combined distortion results when using equally distorted training and test data show that

the haar and statistical features are the best for dealing with combined distortions. Their ex-

clusion in subtractive analysis causes a drop of at least 0.1 F-Score for all amounts of observed

data. The F-Scores show a linear decrease from 0.8 at 100% observed data to 0.4 at 10% ob-

served data. This means that are features are not adequate to classify the distorted light curves

for the accuracy required in the VAST project.

• When using undistorted training and distorted test data with combined distortions the classifier

does not perform better than 0.4 F-Score for any amount of observed data. Since in reality the

amount of noise and missing data in the light curve will not be known in advance then this

result is what we would expect if the classifier were placed in the VAST pipeline.
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• Preprocessing to address the shift in feature values when using unequally distorted training and

test sets would make this classifier more viable.

• Exploring new features to improve classification performance with equally distorted training

and test sets is important as well. The upper bounds placed in the combined distortions exper-

iment with equally distorted training and test data are still too low to be useful in the VAST

pipeline.

In Chapter 5 I give a preliminary investigation into the shapelet time series feature representation. The

key results of these experiments are as follows:

• I showed that for undistorted data the shapelet algorithm without modification achieves an

F-Score of 0.58.

• I demonstrated that the basic algorithm as proposed by Ye in Ye and Keogh (2009) has some

fundamental problems in coping with noise and missing data and propose improvements to the

algorithm that will improve classification performance.

• I identified that the use of undistorted training data for extracting and evaluating shapelets leads

to choices of subsequences that are not useful for dealing with noise, and proposed evaluating

shapelet discrimination on distorted datasets to make the extraction algorithm choose more

robust shapelets.

• I identify that the shapelet algorithm cannot discriminate between the XRB and SNe classes

because they have similar distinctive substructures and suggest using multi-class entropy to

extract shapelets that are useful for classifying multiple transient classes at once.

• I Implemented a shapelet clustering algorithm that showed a marginal (0 to 0.1 F-Score) per-

formance improvement on all kinds of distortions.

• I Showed that the shapelet algorithm gives a marginal 0.1 F-Score improvement when com-

bined with the core feature set for 10% observed data by helping the classifier identify discrim-

inate the background noise class.

These experiments led me to conclude that the shapelet algorithm shows some promise for classifying

transients with an F-Score of 0.58 on undistorted data. With future work to improve the way they are

applied they should improve classification performance of distorted light curves.

Finally in the discussion I tie the results back to the VAST project and make recommendations for

improvements and future work. I conclude that the results are not yet acceptable for use in the VAST
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classification pipeline with F-Scores no higher than 0.4 for fully observed transients. However, I note that

the robustness of the features demonstrated with F-Scores of 0.9 on up to 90% missing data and 0.8 at 1.0

noise-signal variance when using equally distorted training and test data means that this approach holds

promise. I assert that the addition of preprocessing techniques involving regression and noise filtering

or smoothing would improve classification performance for the missing data and noise distortions when

combined with the core feature set.

The problem of transient classification is as yet unexplored in astronomical or time series literature. This

thesis characterises the problems in terms of the choice of supervised classification and the types and

severity of distortions appearing in test data. It demonstrates that feature extraction and supervised

classification is a viable technique for transient classification. Future improvements will make this

approach suitable implementation in a classification pipeline capable of dealing with the large volumes

of data that will be produced by next generation telescopes.
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APPENDIX A

Samples of distorted light curves from experiment test sets

A.1 Limiting the length of the observed lightcurve

Observed
data ESE BG XRB FSdMe FSRSCVn Novae IDV SNe
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FIGURE A.1: Light curve samples with Gaussian noise introduced as the fraction on
the y axis multiplied by its standard deviation.

A.2 Introducing noise into the light curve

A.4 Simultaneous distortions and limiting the observed light curve
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Noise ESE BG XRB FSdMe FSRSCVn Novae IDV SNe

0.0
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3.0

FIGURE A.2: Light curve samples with Gaussian noise introduced as the fraction on
the y axis multiplied by its standard deviation.

A.3 Introducing gaps into the light curve

Missing
data ESE BG XRB FSdMe FSRSCVn Novae IDV SNe

0
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FIGURE A.3: Light curve samples from our dataset with missing data introduced as
small random chunks until the percentage of the data points indicated in the left column
remains
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Observed
data ESE BG XRB FSdMe FSRSCVn Novae IDV SNe
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FIGURE A.4: Light curve samples from our dataset with missing data introduced as
small random chunks until the percentage of the data points indicated in the left column
remains
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Schematic of VAST pipeline
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FIGURE B.1: The VAST transient detection and classification pipeline
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